Inzynierka/Lib/site-packages/numpy/core/_exceptions.py

281 lines
8.4 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
"""
Various richly-typed exceptions, that also help us deal with string formatting
in python where it's easier.
By putting the formatting in `__str__`, we also avoid paying the cost for
users who silence the exceptions.
"""
from numpy.core.overrides import set_module
def _unpack_tuple(tup):
if len(tup) == 1:
return tup[0]
else:
return tup
def _display_as_base(cls):
"""
A decorator that makes an exception class look like its base.
We use this to hide subclasses that are implementation details - the user
should catch the base type, which is what the traceback will show them.
Classes decorated with this decorator are subject to removal without a
deprecation warning.
"""
assert issubclass(cls, Exception)
cls.__name__ = cls.__base__.__name__
return cls
class UFuncTypeError(TypeError):
""" Base class for all ufunc exceptions """
def __init__(self, ufunc):
self.ufunc = ufunc
@_display_as_base
class _UFuncBinaryResolutionError(UFuncTypeError):
""" Thrown when a binary resolution fails """
def __init__(self, ufunc, dtypes):
super().__init__(ufunc)
self.dtypes = tuple(dtypes)
assert len(self.dtypes) == 2
def __str__(self):
return (
"ufunc {!r} cannot use operands with types {!r} and {!r}"
).format(
self.ufunc.__name__, *self.dtypes
)
@_display_as_base
class _UFuncNoLoopError(UFuncTypeError):
""" Thrown when a ufunc loop cannot be found """
def __init__(self, ufunc, dtypes):
super().__init__(ufunc)
self.dtypes = tuple(dtypes)
def __str__(self):
return (
"ufunc {!r} did not contain a loop with signature matching types "
"{!r} -> {!r}"
).format(
self.ufunc.__name__,
_unpack_tuple(self.dtypes[:self.ufunc.nin]),
_unpack_tuple(self.dtypes[self.ufunc.nin:])
)
@_display_as_base
class _UFuncCastingError(UFuncTypeError):
def __init__(self, ufunc, casting, from_, to):
super().__init__(ufunc)
self.casting = casting
self.from_ = from_
self.to = to
@_display_as_base
class _UFuncInputCastingError(_UFuncCastingError):
""" Thrown when a ufunc input cannot be casted """
def __init__(self, ufunc, casting, from_, to, i):
super().__init__(ufunc, casting, from_, to)
self.in_i = i
def __str__(self):
# only show the number if more than one input exists
i_str = "{} ".format(self.in_i) if self.ufunc.nin != 1 else ""
return (
"Cannot cast ufunc {!r} input {}from {!r} to {!r} with casting "
"rule {!r}"
).format(
self.ufunc.__name__, i_str, self.from_, self.to, self.casting
)
@_display_as_base
class _UFuncOutputCastingError(_UFuncCastingError):
""" Thrown when a ufunc output cannot be casted """
def __init__(self, ufunc, casting, from_, to, i):
super().__init__(ufunc, casting, from_, to)
self.out_i = i
def __str__(self):
# only show the number if more than one output exists
i_str = "{} ".format(self.out_i) if self.ufunc.nout != 1 else ""
return (
"Cannot cast ufunc {!r} output {}from {!r} to {!r} with casting "
"rule {!r}"
).format(
self.ufunc.__name__, i_str, self.from_, self.to, self.casting
)
# Exception used in shares_memory()
@set_module('numpy')
class TooHardError(RuntimeError):
"""max_work was exceeded.
This is raised whenever the maximum number of candidate solutions
to consider specified by the ``max_work`` parameter is exceeded.
Assigning a finite number to max_work may have caused the operation
to fail.
"""
pass
@set_module('numpy')
class AxisError(ValueError, IndexError):
"""Axis supplied was invalid.
This is raised whenever an ``axis`` parameter is specified that is larger
than the number of array dimensions.
For compatibility with code written against older numpy versions, which
raised a mixture of `ValueError` and `IndexError` for this situation, this
exception subclasses both to ensure that ``except ValueError`` and
``except IndexError`` statements continue to catch `AxisError`.
.. versionadded:: 1.13
Parameters
----------
axis : int or str
The out of bounds axis or a custom exception message.
If an axis is provided, then `ndim` should be specified as well.
ndim : int, optional
The number of array dimensions.
msg_prefix : str, optional
A prefix for the exception message.
Attributes
----------
axis : int, optional
The out of bounds axis or ``None`` if a custom exception
message was provided. This should be the axis as passed by
the user, before any normalization to resolve negative indices.
.. versionadded:: 1.22
ndim : int, optional
The number of array dimensions or ``None`` if a custom exception
message was provided.
.. versionadded:: 1.22
Examples
--------
>>> array_1d = np.arange(10)
>>> np.cumsum(array_1d, axis=1)
Traceback (most recent call last):
...
numpy.AxisError: axis 1 is out of bounds for array of dimension 1
Negative axes are preserved:
>>> np.cumsum(array_1d, axis=-2)
Traceback (most recent call last):
...
numpy.AxisError: axis -2 is out of bounds for array of dimension 1
The class constructor generally takes the axis and arrays'
dimensionality as arguments:
>>> print(np.AxisError(2, 1, msg_prefix='error'))
error: axis 2 is out of bounds for array of dimension 1
Alternatively, a custom exception message can be passed:
>>> print(np.AxisError('Custom error message'))
Custom error message
"""
__slots__ = ("axis", "ndim", "_msg")
def __init__(self, axis, ndim=None, msg_prefix=None):
if ndim is msg_prefix is None:
# single-argument form: directly set the error message
self._msg = axis
self.axis = None
self.ndim = None
else:
self._msg = msg_prefix
self.axis = axis
self.ndim = ndim
def __str__(self):
axis = self.axis
ndim = self.ndim
if axis is ndim is None:
return self._msg
else:
msg = f"axis {axis} is out of bounds for array of dimension {ndim}"
if self._msg is not None:
msg = f"{self._msg}: {msg}"
return msg
@_display_as_base
class _ArrayMemoryError(MemoryError):
""" Thrown when an array cannot be allocated"""
def __init__(self, shape, dtype):
self.shape = shape
self.dtype = dtype
@property
def _total_size(self):
num_bytes = self.dtype.itemsize
for dim in self.shape:
num_bytes *= dim
return num_bytes
@staticmethod
def _size_to_string(num_bytes):
""" Convert a number of bytes into a binary size string """
# https://en.wikipedia.org/wiki/Binary_prefix
LOG2_STEP = 10
STEP = 1024
units = ['bytes', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB']
unit_i = max(num_bytes.bit_length() - 1, 1) // LOG2_STEP
unit_val = 1 << (unit_i * LOG2_STEP)
n_units = num_bytes / unit_val
del unit_val
# ensure we pick a unit that is correct after rounding
if round(n_units) == STEP:
unit_i += 1
n_units /= STEP
# deal with sizes so large that we don't have units for them
if unit_i >= len(units):
new_unit_i = len(units) - 1
n_units *= 1 << ((unit_i - new_unit_i) * LOG2_STEP)
unit_i = new_unit_i
unit_name = units[unit_i]
# format with a sensible number of digits
if unit_i == 0:
# no decimal point on bytes
return '{:.0f} {}'.format(n_units, unit_name)
elif round(n_units) < 1000:
# 3 significant figures, if none are dropped to the left of the .
return '{:#.3g} {}'.format(n_units, unit_name)
else:
# just give all the digits otherwise
return '{:#.0f} {}'.format(n_units, unit_name)
def __str__(self):
size_str = self._size_to_string(self._total_size)
return (
"Unable to allocate {} for an array with shape {} and data type {}"
.format(size_str, self.shape, self.dtype)
)