86 lines
2.2 KiB
Python
86 lines
2.2 KiB
Python
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
@pytest.fixture(params=[["inner"], ["inner", "outer"]])
|
||
|
def frame(request):
|
||
|
levels = request.param
|
||
|
df = pd.DataFrame(
|
||
|
{
|
||
|
"outer": ["a", "a", "a", "b", "b", "b"],
|
||
|
"inner": [1, 2, 3, 1, 2, 3],
|
||
|
"A": np.arange(6),
|
||
|
"B": ["one", "one", "two", "two", "one", "one"],
|
||
|
}
|
||
|
)
|
||
|
if levels:
|
||
|
df = df.set_index(levels)
|
||
|
|
||
|
return df
|
||
|
|
||
|
|
||
|
@pytest.fixture()
|
||
|
def series():
|
||
|
df = pd.DataFrame(
|
||
|
{
|
||
|
"outer": ["a", "a", "a", "b", "b", "b"],
|
||
|
"inner": [1, 2, 3, 1, 2, 3],
|
||
|
"A": np.arange(6),
|
||
|
"B": ["one", "one", "two", "two", "one", "one"],
|
||
|
}
|
||
|
)
|
||
|
s = df.set_index(["outer", "inner", "B"])["A"]
|
||
|
|
||
|
return s
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"key_strs,groupers",
|
||
|
[
|
||
|
("inner", pd.Grouper(level="inner")), # Index name
|
||
|
(["inner"], [pd.Grouper(level="inner")]), # List of index name
|
||
|
(["B", "inner"], ["B", pd.Grouper(level="inner")]), # Column and index
|
||
|
(["inner", "B"], [pd.Grouper(level="inner"), "B"]), # Index and column
|
||
|
],
|
||
|
)
|
||
|
def test_grouper_index_level_as_string(frame, key_strs, groupers):
|
||
|
if "B" not in key_strs or "outer" in frame.columns:
|
||
|
result = frame.groupby(key_strs).mean(numeric_only=True)
|
||
|
expected = frame.groupby(groupers).mean(numeric_only=True)
|
||
|
else:
|
||
|
result = frame.groupby(key_strs).mean()
|
||
|
expected = frame.groupby(groupers).mean()
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"levels",
|
||
|
[
|
||
|
"inner",
|
||
|
"outer",
|
||
|
"B",
|
||
|
["inner"],
|
||
|
["outer"],
|
||
|
["B"],
|
||
|
["inner", "outer"],
|
||
|
["outer", "inner"],
|
||
|
["inner", "outer", "B"],
|
||
|
["B", "outer", "inner"],
|
||
|
],
|
||
|
)
|
||
|
def test_grouper_index_level_as_string_series(series, levels):
|
||
|
# Compute expected result
|
||
|
if isinstance(levels, list):
|
||
|
groupers = [pd.Grouper(level=lv) for lv in levels]
|
||
|
else:
|
||
|
groupers = pd.Grouper(level=levels)
|
||
|
|
||
|
expected = series.groupby(groupers).mean()
|
||
|
|
||
|
# Compute and check result
|
||
|
result = series.groupby(levels).mean()
|
||
|
tm.assert_series_equal(result, expected)
|