699 lines
22 KiB
Python
699 lines
22 KiB
Python
|
from datetime import datetime
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
NaT,
|
||
|
Series,
|
||
|
concat,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
def test_rank_unordered_categorical_typeerror():
|
||
|
# GH#51034 should be TypeError, not NotImplementedError
|
||
|
cat = pd.Categorical([], ordered=False)
|
||
|
ser = Series(cat)
|
||
|
df = ser.to_frame()
|
||
|
|
||
|
msg = "Cannot perform rank with non-ordered Categorical"
|
||
|
|
||
|
gb = ser.groupby(cat)
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
gb.rank()
|
||
|
|
||
|
gb2 = df.groupby(cat)
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
gb2.rank()
|
||
|
|
||
|
|
||
|
def test_rank_apply():
|
||
|
lev1 = tm.rands_array(10, 100)
|
||
|
lev2 = tm.rands_array(10, 130)
|
||
|
lab1 = np.random.randint(0, 100, size=500)
|
||
|
lab2 = np.random.randint(0, 130, size=500)
|
||
|
|
||
|
df = DataFrame(
|
||
|
{
|
||
|
"value": np.random.randn(500),
|
||
|
"key1": lev1.take(lab1),
|
||
|
"key2": lev2.take(lab2),
|
||
|
}
|
||
|
)
|
||
|
|
||
|
result = df.groupby(["key1", "key2"]).value.rank()
|
||
|
|
||
|
expected = [piece.value.rank() for key, piece in df.groupby(["key1", "key2"])]
|
||
|
expected = concat(expected, axis=0)
|
||
|
expected = expected.reindex(result.index)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = df.groupby(["key1", "key2"]).value.rank(pct=True)
|
||
|
|
||
|
expected = [
|
||
|
piece.value.rank(pct=True) for key, piece in df.groupby(["key1", "key2"])
|
||
|
]
|
||
|
expected = concat(expected, axis=0)
|
||
|
expected = expected.reindex(result.index)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("grps", [["qux"], ["qux", "quux"]])
|
||
|
@pytest.mark.parametrize(
|
||
|
"vals",
|
||
|
[
|
||
|
np.array([2, 2, 8, 2, 6], dtype=dtype)
|
||
|
for dtype in ["i8", "i4", "i2", "i1", "u8", "u4", "u2", "u1", "f8", "f4", "f2"]
|
||
|
]
|
||
|
+ [
|
||
|
[
|
||
|
pd.Timestamp("2018-01-02"),
|
||
|
pd.Timestamp("2018-01-02"),
|
||
|
pd.Timestamp("2018-01-08"),
|
||
|
pd.Timestamp("2018-01-02"),
|
||
|
pd.Timestamp("2018-01-06"),
|
||
|
],
|
||
|
[
|
||
|
pd.Timestamp("2018-01-02", tz="US/Pacific"),
|
||
|
pd.Timestamp("2018-01-02", tz="US/Pacific"),
|
||
|
pd.Timestamp("2018-01-08", tz="US/Pacific"),
|
||
|
pd.Timestamp("2018-01-02", tz="US/Pacific"),
|
||
|
pd.Timestamp("2018-01-06", tz="US/Pacific"),
|
||
|
],
|
||
|
[
|
||
|
pd.Timestamp("2018-01-02") - pd.Timestamp(0),
|
||
|
pd.Timestamp("2018-01-02") - pd.Timestamp(0),
|
||
|
pd.Timestamp("2018-01-08") - pd.Timestamp(0),
|
||
|
pd.Timestamp("2018-01-02") - pd.Timestamp(0),
|
||
|
pd.Timestamp("2018-01-06") - pd.Timestamp(0),
|
||
|
],
|
||
|
[
|
||
|
pd.Timestamp("2018-01-02").to_period("D"),
|
||
|
pd.Timestamp("2018-01-02").to_period("D"),
|
||
|
pd.Timestamp("2018-01-08").to_period("D"),
|
||
|
pd.Timestamp("2018-01-02").to_period("D"),
|
||
|
pd.Timestamp("2018-01-06").to_period("D"),
|
||
|
],
|
||
|
],
|
||
|
ids=lambda x: type(x[0]),
|
||
|
)
|
||
|
@pytest.mark.parametrize(
|
||
|
"ties_method,ascending,pct,exp",
|
||
|
[
|
||
|
("average", True, False, [2.0, 2.0, 5.0, 2.0, 4.0]),
|
||
|
("average", True, True, [0.4, 0.4, 1.0, 0.4, 0.8]),
|
||
|
("average", False, False, [4.0, 4.0, 1.0, 4.0, 2.0]),
|
||
|
("average", False, True, [0.8, 0.8, 0.2, 0.8, 0.4]),
|
||
|
("min", True, False, [1.0, 1.0, 5.0, 1.0, 4.0]),
|
||
|
("min", True, True, [0.2, 0.2, 1.0, 0.2, 0.8]),
|
||
|
("min", False, False, [3.0, 3.0, 1.0, 3.0, 2.0]),
|
||
|
("min", False, True, [0.6, 0.6, 0.2, 0.6, 0.4]),
|
||
|
("max", True, False, [3.0, 3.0, 5.0, 3.0, 4.0]),
|
||
|
("max", True, True, [0.6, 0.6, 1.0, 0.6, 0.8]),
|
||
|
("max", False, False, [5.0, 5.0, 1.0, 5.0, 2.0]),
|
||
|
("max", False, True, [1.0, 1.0, 0.2, 1.0, 0.4]),
|
||
|
("first", True, False, [1.0, 2.0, 5.0, 3.0, 4.0]),
|
||
|
("first", True, True, [0.2, 0.4, 1.0, 0.6, 0.8]),
|
||
|
("first", False, False, [3.0, 4.0, 1.0, 5.0, 2.0]),
|
||
|
("first", False, True, [0.6, 0.8, 0.2, 1.0, 0.4]),
|
||
|
("dense", True, False, [1.0, 1.0, 3.0, 1.0, 2.0]),
|
||
|
("dense", True, True, [1.0 / 3.0, 1.0 / 3.0, 3.0 / 3.0, 1.0 / 3.0, 2.0 / 3.0]),
|
||
|
("dense", False, False, [3.0, 3.0, 1.0, 3.0, 2.0]),
|
||
|
("dense", False, True, [3.0 / 3.0, 3.0 / 3.0, 1.0 / 3.0, 3.0 / 3.0, 2.0 / 3.0]),
|
||
|
],
|
||
|
)
|
||
|
def test_rank_args(grps, vals, ties_method, ascending, pct, exp):
|
||
|
key = np.repeat(grps, len(vals))
|
||
|
|
||
|
orig_vals = vals
|
||
|
vals = list(vals) * len(grps)
|
||
|
if isinstance(orig_vals, np.ndarray):
|
||
|
vals = np.array(vals, dtype=orig_vals.dtype)
|
||
|
|
||
|
df = DataFrame({"key": key, "val": vals})
|
||
|
result = df.groupby("key").rank(method=ties_method, ascending=ascending, pct=pct)
|
||
|
|
||
|
exp_df = DataFrame(exp * len(grps), columns=["val"])
|
||
|
tm.assert_frame_equal(result, exp_df)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("grps", [["qux"], ["qux", "quux"]])
|
||
|
@pytest.mark.parametrize(
|
||
|
"vals", [[-np.inf, -np.inf, np.nan, 1.0, np.nan, np.inf, np.inf]]
|
||
|
)
|
||
|
@pytest.mark.parametrize(
|
||
|
"ties_method,ascending,na_option,exp",
|
||
|
[
|
||
|
("average", True, "keep", [1.5, 1.5, np.nan, 3, np.nan, 4.5, 4.5]),
|
||
|
("average", True, "top", [3.5, 3.5, 1.5, 5.0, 1.5, 6.5, 6.5]),
|
||
|
("average", True, "bottom", [1.5, 1.5, 6.5, 3.0, 6.5, 4.5, 4.5]),
|
||
|
("average", False, "keep", [4.5, 4.5, np.nan, 3, np.nan, 1.5, 1.5]),
|
||
|
("average", False, "top", [6.5, 6.5, 1.5, 5.0, 1.5, 3.5, 3.5]),
|
||
|
("average", False, "bottom", [4.5, 4.5, 6.5, 3.0, 6.5, 1.5, 1.5]),
|
||
|
("min", True, "keep", [1.0, 1.0, np.nan, 3.0, np.nan, 4.0, 4.0]),
|
||
|
("min", True, "top", [3.0, 3.0, 1.0, 5.0, 1.0, 6.0, 6.0]),
|
||
|
("min", True, "bottom", [1.0, 1.0, 6.0, 3.0, 6.0, 4.0, 4.0]),
|
||
|
("min", False, "keep", [4.0, 4.0, np.nan, 3.0, np.nan, 1.0, 1.0]),
|
||
|
("min", False, "top", [6.0, 6.0, 1.0, 5.0, 1.0, 3.0, 3.0]),
|
||
|
("min", False, "bottom", [4.0, 4.0, 6.0, 3.0, 6.0, 1.0, 1.0]),
|
||
|
("max", True, "keep", [2.0, 2.0, np.nan, 3.0, np.nan, 5.0, 5.0]),
|
||
|
("max", True, "top", [4.0, 4.0, 2.0, 5.0, 2.0, 7.0, 7.0]),
|
||
|
("max", True, "bottom", [2.0, 2.0, 7.0, 3.0, 7.0, 5.0, 5.0]),
|
||
|
("max", False, "keep", [5.0, 5.0, np.nan, 3.0, np.nan, 2.0, 2.0]),
|
||
|
("max", False, "top", [7.0, 7.0, 2.0, 5.0, 2.0, 4.0, 4.0]),
|
||
|
("max", False, "bottom", [5.0, 5.0, 7.0, 3.0, 7.0, 2.0, 2.0]),
|
||
|
("first", True, "keep", [1.0, 2.0, np.nan, 3.0, np.nan, 4.0, 5.0]),
|
||
|
("first", True, "top", [3.0, 4.0, 1.0, 5.0, 2.0, 6.0, 7.0]),
|
||
|
("first", True, "bottom", [1.0, 2.0, 6.0, 3.0, 7.0, 4.0, 5.0]),
|
||
|
("first", False, "keep", [4.0, 5.0, np.nan, 3.0, np.nan, 1.0, 2.0]),
|
||
|
("first", False, "top", [6.0, 7.0, 1.0, 5.0, 2.0, 3.0, 4.0]),
|
||
|
("first", False, "bottom", [4.0, 5.0, 6.0, 3.0, 7.0, 1.0, 2.0]),
|
||
|
("dense", True, "keep", [1.0, 1.0, np.nan, 2.0, np.nan, 3.0, 3.0]),
|
||
|
("dense", True, "top", [2.0, 2.0, 1.0, 3.0, 1.0, 4.0, 4.0]),
|
||
|
("dense", True, "bottom", [1.0, 1.0, 4.0, 2.0, 4.0, 3.0, 3.0]),
|
||
|
("dense", False, "keep", [3.0, 3.0, np.nan, 2.0, np.nan, 1.0, 1.0]),
|
||
|
("dense", False, "top", [4.0, 4.0, 1.0, 3.0, 1.0, 2.0, 2.0]),
|
||
|
("dense", False, "bottom", [3.0, 3.0, 4.0, 2.0, 4.0, 1.0, 1.0]),
|
||
|
],
|
||
|
)
|
||
|
def test_infs_n_nans(grps, vals, ties_method, ascending, na_option, exp):
|
||
|
# GH 20561
|
||
|
key = np.repeat(grps, len(vals))
|
||
|
vals = vals * len(grps)
|
||
|
df = DataFrame({"key": key, "val": vals})
|
||
|
result = df.groupby("key").rank(
|
||
|
method=ties_method, ascending=ascending, na_option=na_option
|
||
|
)
|
||
|
exp_df = DataFrame(exp * len(grps), columns=["val"])
|
||
|
tm.assert_frame_equal(result, exp_df)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("grps", [["qux"], ["qux", "quux"]])
|
||
|
@pytest.mark.parametrize(
|
||
|
"vals",
|
||
|
[
|
||
|
np.array([2, 2, np.nan, 8, 2, 6, np.nan, np.nan], dtype=dtype)
|
||
|
for dtype in ["f8", "f4", "f2"]
|
||
|
]
|
||
|
+ [
|
||
|
[
|
||
|
pd.Timestamp("2018-01-02"),
|
||
|
pd.Timestamp("2018-01-02"),
|
||
|
np.nan,
|
||
|
pd.Timestamp("2018-01-08"),
|
||
|
pd.Timestamp("2018-01-02"),
|
||
|
pd.Timestamp("2018-01-06"),
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
],
|
||
|
[
|
||
|
pd.Timestamp("2018-01-02", tz="US/Pacific"),
|
||
|
pd.Timestamp("2018-01-02", tz="US/Pacific"),
|
||
|
np.nan,
|
||
|
pd.Timestamp("2018-01-08", tz="US/Pacific"),
|
||
|
pd.Timestamp("2018-01-02", tz="US/Pacific"),
|
||
|
pd.Timestamp("2018-01-06", tz="US/Pacific"),
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
],
|
||
|
[
|
||
|
pd.Timestamp("2018-01-02") - pd.Timestamp(0),
|
||
|
pd.Timestamp("2018-01-02") - pd.Timestamp(0),
|
||
|
np.nan,
|
||
|
pd.Timestamp("2018-01-08") - pd.Timestamp(0),
|
||
|
pd.Timestamp("2018-01-02") - pd.Timestamp(0),
|
||
|
pd.Timestamp("2018-01-06") - pd.Timestamp(0),
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
],
|
||
|
[
|
||
|
pd.Timestamp("2018-01-02").to_period("D"),
|
||
|
pd.Timestamp("2018-01-02").to_period("D"),
|
||
|
np.nan,
|
||
|
pd.Timestamp("2018-01-08").to_period("D"),
|
||
|
pd.Timestamp("2018-01-02").to_period("D"),
|
||
|
pd.Timestamp("2018-01-06").to_period("D"),
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
],
|
||
|
],
|
||
|
ids=lambda x: type(x[0]),
|
||
|
)
|
||
|
@pytest.mark.parametrize(
|
||
|
"ties_method,ascending,na_option,pct,exp",
|
||
|
[
|
||
|
(
|
||
|
"average",
|
||
|
True,
|
||
|
"keep",
|
||
|
False,
|
||
|
[2.0, 2.0, np.nan, 5.0, 2.0, 4.0, np.nan, np.nan],
|
||
|
),
|
||
|
(
|
||
|
"average",
|
||
|
True,
|
||
|
"keep",
|
||
|
True,
|
||
|
[0.4, 0.4, np.nan, 1.0, 0.4, 0.8, np.nan, np.nan],
|
||
|
),
|
||
|
(
|
||
|
"average",
|
||
|
False,
|
||
|
"keep",
|
||
|
False,
|
||
|
[4.0, 4.0, np.nan, 1.0, 4.0, 2.0, np.nan, np.nan],
|
||
|
),
|
||
|
(
|
||
|
"average",
|
||
|
False,
|
||
|
"keep",
|
||
|
True,
|
||
|
[0.8, 0.8, np.nan, 0.2, 0.8, 0.4, np.nan, np.nan],
|
||
|
),
|
||
|
("min", True, "keep", False, [1.0, 1.0, np.nan, 5.0, 1.0, 4.0, np.nan, np.nan]),
|
||
|
("min", True, "keep", True, [0.2, 0.2, np.nan, 1.0, 0.2, 0.8, np.nan, np.nan]),
|
||
|
(
|
||
|
"min",
|
||
|
False,
|
||
|
"keep",
|
||
|
False,
|
||
|
[3.0, 3.0, np.nan, 1.0, 3.0, 2.0, np.nan, np.nan],
|
||
|
),
|
||
|
("min", False, "keep", True, [0.6, 0.6, np.nan, 0.2, 0.6, 0.4, np.nan, np.nan]),
|
||
|
("max", True, "keep", False, [3.0, 3.0, np.nan, 5.0, 3.0, 4.0, np.nan, np.nan]),
|
||
|
("max", True, "keep", True, [0.6, 0.6, np.nan, 1.0, 0.6, 0.8, np.nan, np.nan]),
|
||
|
(
|
||
|
"max",
|
||
|
False,
|
||
|
"keep",
|
||
|
False,
|
||
|
[5.0, 5.0, np.nan, 1.0, 5.0, 2.0, np.nan, np.nan],
|
||
|
),
|
||
|
("max", False, "keep", True, [1.0, 1.0, np.nan, 0.2, 1.0, 0.4, np.nan, np.nan]),
|
||
|
(
|
||
|
"first",
|
||
|
True,
|
||
|
"keep",
|
||
|
False,
|
||
|
[1.0, 2.0, np.nan, 5.0, 3.0, 4.0, np.nan, np.nan],
|
||
|
),
|
||
|
(
|
||
|
"first",
|
||
|
True,
|
||
|
"keep",
|
||
|
True,
|
||
|
[0.2, 0.4, np.nan, 1.0, 0.6, 0.8, np.nan, np.nan],
|
||
|
),
|
||
|
(
|
||
|
"first",
|
||
|
False,
|
||
|
"keep",
|
||
|
False,
|
||
|
[3.0, 4.0, np.nan, 1.0, 5.0, 2.0, np.nan, np.nan],
|
||
|
),
|
||
|
(
|
||
|
"first",
|
||
|
False,
|
||
|
"keep",
|
||
|
True,
|
||
|
[0.6, 0.8, np.nan, 0.2, 1.0, 0.4, np.nan, np.nan],
|
||
|
),
|
||
|
(
|
||
|
"dense",
|
||
|
True,
|
||
|
"keep",
|
||
|
False,
|
||
|
[1.0, 1.0, np.nan, 3.0, 1.0, 2.0, np.nan, np.nan],
|
||
|
),
|
||
|
(
|
||
|
"dense",
|
||
|
True,
|
||
|
"keep",
|
||
|
True,
|
||
|
[
|
||
|
1.0 / 3.0,
|
||
|
1.0 / 3.0,
|
||
|
np.nan,
|
||
|
3.0 / 3.0,
|
||
|
1.0 / 3.0,
|
||
|
2.0 / 3.0,
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
],
|
||
|
),
|
||
|
(
|
||
|
"dense",
|
||
|
False,
|
||
|
"keep",
|
||
|
False,
|
||
|
[3.0, 3.0, np.nan, 1.0, 3.0, 2.0, np.nan, np.nan],
|
||
|
),
|
||
|
(
|
||
|
"dense",
|
||
|
False,
|
||
|
"keep",
|
||
|
True,
|
||
|
[
|
||
|
3.0 / 3.0,
|
||
|
3.0 / 3.0,
|
||
|
np.nan,
|
||
|
1.0 / 3.0,
|
||
|
3.0 / 3.0,
|
||
|
2.0 / 3.0,
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
],
|
||
|
),
|
||
|
("average", True, "bottom", False, [2.0, 2.0, 7.0, 5.0, 2.0, 4.0, 7.0, 7.0]),
|
||
|
(
|
||
|
"average",
|
||
|
True,
|
||
|
"bottom",
|
||
|
True,
|
||
|
[0.25, 0.25, 0.875, 0.625, 0.25, 0.5, 0.875, 0.875],
|
||
|
),
|
||
|
("average", False, "bottom", False, [4.0, 4.0, 7.0, 1.0, 4.0, 2.0, 7.0, 7.0]),
|
||
|
(
|
||
|
"average",
|
||
|
False,
|
||
|
"bottom",
|
||
|
True,
|
||
|
[0.5, 0.5, 0.875, 0.125, 0.5, 0.25, 0.875, 0.875],
|
||
|
),
|
||
|
("min", True, "bottom", False, [1.0, 1.0, 6.0, 5.0, 1.0, 4.0, 6.0, 6.0]),
|
||
|
(
|
||
|
"min",
|
||
|
True,
|
||
|
"bottom",
|
||
|
True,
|
||
|
[0.125, 0.125, 0.75, 0.625, 0.125, 0.5, 0.75, 0.75],
|
||
|
),
|
||
|
("min", False, "bottom", False, [3.0, 3.0, 6.0, 1.0, 3.0, 2.0, 6.0, 6.0]),
|
||
|
(
|
||
|
"min",
|
||
|
False,
|
||
|
"bottom",
|
||
|
True,
|
||
|
[0.375, 0.375, 0.75, 0.125, 0.375, 0.25, 0.75, 0.75],
|
||
|
),
|
||
|
("max", True, "bottom", False, [3.0, 3.0, 8.0, 5.0, 3.0, 4.0, 8.0, 8.0]),
|
||
|
("max", True, "bottom", True, [0.375, 0.375, 1.0, 0.625, 0.375, 0.5, 1.0, 1.0]),
|
||
|
("max", False, "bottom", False, [5.0, 5.0, 8.0, 1.0, 5.0, 2.0, 8.0, 8.0]),
|
||
|
(
|
||
|
"max",
|
||
|
False,
|
||
|
"bottom",
|
||
|
True,
|
||
|
[0.625, 0.625, 1.0, 0.125, 0.625, 0.25, 1.0, 1.0],
|
||
|
),
|
||
|
("first", True, "bottom", False, [1.0, 2.0, 6.0, 5.0, 3.0, 4.0, 7.0, 8.0]),
|
||
|
(
|
||
|
"first",
|
||
|
True,
|
||
|
"bottom",
|
||
|
True,
|
||
|
[0.125, 0.25, 0.75, 0.625, 0.375, 0.5, 0.875, 1.0],
|
||
|
),
|
||
|
("first", False, "bottom", False, [3.0, 4.0, 6.0, 1.0, 5.0, 2.0, 7.0, 8.0]),
|
||
|
(
|
||
|
"first",
|
||
|
False,
|
||
|
"bottom",
|
||
|
True,
|
||
|
[0.375, 0.5, 0.75, 0.125, 0.625, 0.25, 0.875, 1.0],
|
||
|
),
|
||
|
("dense", True, "bottom", False, [1.0, 1.0, 4.0, 3.0, 1.0, 2.0, 4.0, 4.0]),
|
||
|
("dense", True, "bottom", True, [0.25, 0.25, 1.0, 0.75, 0.25, 0.5, 1.0, 1.0]),
|
||
|
("dense", False, "bottom", False, [3.0, 3.0, 4.0, 1.0, 3.0, 2.0, 4.0, 4.0]),
|
||
|
("dense", False, "bottom", True, [0.75, 0.75, 1.0, 0.25, 0.75, 0.5, 1.0, 1.0]),
|
||
|
],
|
||
|
)
|
||
|
def test_rank_args_missing(grps, vals, ties_method, ascending, na_option, pct, exp):
|
||
|
key = np.repeat(grps, len(vals))
|
||
|
|
||
|
orig_vals = vals
|
||
|
vals = list(vals) * len(grps)
|
||
|
if isinstance(orig_vals, np.ndarray):
|
||
|
vals = np.array(vals, dtype=orig_vals.dtype)
|
||
|
|
||
|
df = DataFrame({"key": key, "val": vals})
|
||
|
result = df.groupby("key").rank(
|
||
|
method=ties_method, ascending=ascending, na_option=na_option, pct=pct
|
||
|
)
|
||
|
|
||
|
exp_df = DataFrame(exp * len(grps), columns=["val"])
|
||
|
tm.assert_frame_equal(result, exp_df)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"pct,exp", [(False, [3.0, 3.0, 3.0, 3.0, 3.0]), (True, [0.6, 0.6, 0.6, 0.6, 0.6])]
|
||
|
)
|
||
|
def test_rank_resets_each_group(pct, exp):
|
||
|
df = DataFrame(
|
||
|
{"key": ["a", "a", "a", "a", "a", "b", "b", "b", "b", "b"], "val": [1] * 10}
|
||
|
)
|
||
|
result = df.groupby("key").rank(pct=pct)
|
||
|
exp_df = DataFrame(exp * 2, columns=["val"])
|
||
|
tm.assert_frame_equal(result, exp_df)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"dtype", ["int64", "int32", "uint64", "uint32", "float64", "float32"]
|
||
|
)
|
||
|
@pytest.mark.parametrize("upper", [True, False])
|
||
|
def test_rank_avg_even_vals(dtype, upper):
|
||
|
if upper:
|
||
|
# use IntegerDtype/FloatingDtype
|
||
|
dtype = dtype[0].upper() + dtype[1:]
|
||
|
dtype = dtype.replace("Ui", "UI")
|
||
|
df = DataFrame({"key": ["a"] * 4, "val": [1] * 4})
|
||
|
df["val"] = df["val"].astype(dtype)
|
||
|
assert df["val"].dtype == dtype
|
||
|
|
||
|
result = df.groupby("key").rank()
|
||
|
exp_df = DataFrame([2.5, 2.5, 2.5, 2.5], columns=["val"])
|
||
|
if upper:
|
||
|
exp_df = exp_df.astype("Float64")
|
||
|
tm.assert_frame_equal(result, exp_df)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("ties_method", ["average", "min", "max", "first", "dense"])
|
||
|
@pytest.mark.parametrize("ascending", [True, False])
|
||
|
@pytest.mark.parametrize("na_option", ["keep", "top", "bottom"])
|
||
|
@pytest.mark.parametrize("pct", [True, False])
|
||
|
@pytest.mark.parametrize(
|
||
|
"vals", [["bar", "bar", "foo", "bar", "baz"], ["bar", np.nan, "foo", np.nan, "baz"]]
|
||
|
)
|
||
|
def test_rank_object_dtype(ties_method, ascending, na_option, pct, vals):
|
||
|
df = DataFrame({"key": ["foo"] * 5, "val": vals})
|
||
|
mask = df["val"].isna()
|
||
|
|
||
|
gb = df.groupby("key")
|
||
|
res = gb.rank(method=ties_method, ascending=ascending, na_option=na_option, pct=pct)
|
||
|
|
||
|
# construct our expected by using numeric values with the same ordering
|
||
|
if mask.any():
|
||
|
df2 = DataFrame({"key": ["foo"] * 5, "val": [0, np.nan, 2, np.nan, 1]})
|
||
|
else:
|
||
|
df2 = DataFrame({"key": ["foo"] * 5, "val": [0, 0, 2, 0, 1]})
|
||
|
|
||
|
gb2 = df2.groupby("key")
|
||
|
alt = gb2.rank(
|
||
|
method=ties_method, ascending=ascending, na_option=na_option, pct=pct
|
||
|
)
|
||
|
|
||
|
tm.assert_frame_equal(res, alt)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("na_option", [True, "bad", 1])
|
||
|
@pytest.mark.parametrize("ties_method", ["average", "min", "max", "first", "dense"])
|
||
|
@pytest.mark.parametrize("ascending", [True, False])
|
||
|
@pytest.mark.parametrize("pct", [True, False])
|
||
|
@pytest.mark.parametrize(
|
||
|
"vals",
|
||
|
[
|
||
|
["bar", "bar", "foo", "bar", "baz"],
|
||
|
["bar", np.nan, "foo", np.nan, "baz"],
|
||
|
[1, np.nan, 2, np.nan, 3],
|
||
|
],
|
||
|
)
|
||
|
def test_rank_naoption_raises(ties_method, ascending, na_option, pct, vals):
|
||
|
df = DataFrame({"key": ["foo"] * 5, "val": vals})
|
||
|
msg = "na_option must be one of 'keep', 'top', or 'bottom'"
|
||
|
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
df.groupby("key").rank(
|
||
|
method=ties_method, ascending=ascending, na_option=na_option, pct=pct
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_rank_empty_group():
|
||
|
# see gh-22519
|
||
|
column = "A"
|
||
|
df = DataFrame({"A": [0, 1, 0], "B": [1.0, np.nan, 2.0]})
|
||
|
|
||
|
result = df.groupby(column).B.rank(pct=True)
|
||
|
expected = Series([0.5, np.nan, 1.0], name="B")
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = df.groupby(column).rank(pct=True)
|
||
|
expected = DataFrame({"B": [0.5, np.nan, 1.0]})
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"input_key,input_value,output_value",
|
||
|
[
|
||
|
([1, 2], [1, 1], [1.0, 1.0]),
|
||
|
([1, 1, 2, 2], [1, 2, 1, 2], [0.5, 1.0, 0.5, 1.0]),
|
||
|
([1, 1, 2, 2], [1, 2, 1, np.nan], [0.5, 1.0, 1.0, np.nan]),
|
||
|
([1, 1, 2], [1, 2, np.nan], [0.5, 1.0, np.nan]),
|
||
|
],
|
||
|
)
|
||
|
def test_rank_zero_div(input_key, input_value, output_value):
|
||
|
# GH 23666
|
||
|
df = DataFrame({"A": input_key, "B": input_value})
|
||
|
|
||
|
result = df.groupby("A").rank(method="dense", pct=True)
|
||
|
expected = DataFrame({"B": output_value})
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_rank_min_int():
|
||
|
# GH-32859
|
||
|
df = DataFrame(
|
||
|
{
|
||
|
"grp": [1, 1, 2],
|
||
|
"int_col": [
|
||
|
np.iinfo(np.int64).min,
|
||
|
np.iinfo(np.int64).max,
|
||
|
np.iinfo(np.int64).min,
|
||
|
],
|
||
|
"datetimelike": [NaT, datetime(2001, 1, 1), NaT],
|
||
|
}
|
||
|
)
|
||
|
|
||
|
result = df.groupby("grp").rank()
|
||
|
expected = DataFrame(
|
||
|
{"int_col": [1.0, 2.0, 1.0], "datetimelike": [np.NaN, 1.0, np.NaN]}
|
||
|
)
|
||
|
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("use_nan", [True, False])
|
||
|
def test_rank_pct_equal_values_on_group_transition(use_nan):
|
||
|
# GH#40518
|
||
|
fill_value = np.nan if use_nan else 3
|
||
|
df = DataFrame(
|
||
|
[
|
||
|
[-1, 1],
|
||
|
[-1, 2],
|
||
|
[1, fill_value],
|
||
|
[-1, fill_value],
|
||
|
],
|
||
|
columns=["group", "val"],
|
||
|
)
|
||
|
result = df.groupby(["group"])["val"].rank(
|
||
|
method="dense",
|
||
|
pct=True,
|
||
|
)
|
||
|
if use_nan:
|
||
|
expected = Series([0.5, 1, np.nan, np.nan], name="val")
|
||
|
else:
|
||
|
expected = Series([1 / 3, 2 / 3, 1, 1], name="val")
|
||
|
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_rank_multiindex():
|
||
|
# GH27721
|
||
|
df = concat(
|
||
|
{
|
||
|
"a": DataFrame({"col1": [3, 4], "col2": [1, 2]}),
|
||
|
"b": DataFrame({"col3": [5, 6], "col4": [7, 8]}),
|
||
|
},
|
||
|
axis=1,
|
||
|
)
|
||
|
|
||
|
gb = df.groupby(level=0, axis=1)
|
||
|
result = gb.rank(axis=1)
|
||
|
|
||
|
expected = concat(
|
||
|
[
|
||
|
df["a"].rank(axis=1),
|
||
|
df["b"].rank(axis=1),
|
||
|
],
|
||
|
axis=1,
|
||
|
keys=["a", "b"],
|
||
|
)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_groupby_axis0_rank_axis1():
|
||
|
# GH#41320
|
||
|
df = DataFrame(
|
||
|
{0: [1, 3, 5, 7], 1: [2, 4, 6, 8], 2: [1.5, 3.5, 5.5, 7.5]},
|
||
|
index=["a", "a", "b", "b"],
|
||
|
)
|
||
|
gb = df.groupby(level=0, axis=0)
|
||
|
|
||
|
res = gb.rank(axis=1)
|
||
|
|
||
|
# This should match what we get when "manually" operating group-by-group
|
||
|
expected = concat([df.loc["a"].rank(axis=1), df.loc["b"].rank(axis=1)], axis=0)
|
||
|
tm.assert_frame_equal(res, expected)
|
||
|
|
||
|
# check that we haven't accidentally written a case that coincidentally
|
||
|
# matches rank(axis=0)
|
||
|
alt = gb.rank(axis=0)
|
||
|
assert not alt.equals(expected)
|
||
|
|
||
|
|
||
|
def test_groupby_axis0_cummax_axis1():
|
||
|
# case where groupby axis is 0 and axis keyword in transform is 1
|
||
|
|
||
|
# df has mixed dtype -> multiple blocks
|
||
|
df = DataFrame(
|
||
|
{0: [1, 3, 5, 7], 1: [2, 4, 6, 8], 2: [1.5, 3.5, 5.5, 7.5]},
|
||
|
index=["a", "a", "b", "b"],
|
||
|
)
|
||
|
gb = df.groupby(level=0, axis=0)
|
||
|
|
||
|
cmax = gb.cummax(axis=1)
|
||
|
expected = df[[0, 1]].astype(np.float64)
|
||
|
expected[2] = expected[1]
|
||
|
tm.assert_frame_equal(cmax, expected)
|
||
|
|
||
|
|
||
|
def test_non_unique_index():
|
||
|
# GH 16577
|
||
|
df = DataFrame(
|
||
|
{"A": [1.0, 2.0, 3.0, np.nan], "value": 1.0},
|
||
|
index=[pd.Timestamp("20170101", tz="US/Eastern")] * 4,
|
||
|
)
|
||
|
result = df.groupby([df.index, "A"]).value.rank(ascending=True, pct=True)
|
||
|
expected = Series(
|
||
|
[1.0, 1.0, 1.0, np.nan],
|
||
|
index=[pd.Timestamp("20170101", tz="US/Eastern")] * 4,
|
||
|
name="value",
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_rank_categorical():
|
||
|
cat = pd.Categorical(["a", "a", "b", np.nan, "c", "b"], ordered=True)
|
||
|
cat2 = pd.Categorical([1, 2, 3, np.nan, 4, 5], ordered=True)
|
||
|
|
||
|
df = DataFrame({"col1": [0, 1, 0, 1, 0, 1], "col2": cat, "col3": cat2})
|
||
|
|
||
|
gb = df.groupby("col1")
|
||
|
|
||
|
res = gb.rank()
|
||
|
|
||
|
expected = df.astype(object).groupby("col1").rank()
|
||
|
tm.assert_frame_equal(res, expected)
|