94 lines
2.9 KiB
Python
94 lines
2.9 KiB
Python
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
Index,
|
||
|
PeriodIndex,
|
||
|
Series,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("by", ["A", "B", ["A", "B"]])
|
||
|
def test_size(df, by):
|
||
|
grouped = df.groupby(by=by)
|
||
|
result = grouped.size()
|
||
|
for key, group in grouped:
|
||
|
assert result[key] == len(group)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"by",
|
||
|
[
|
||
|
[0, 0, 0, 0],
|
||
|
[0, 1, 1, 1],
|
||
|
[1, 0, 1, 1],
|
||
|
[0, None, None, None],
|
||
|
pytest.param([None, None, None, None], marks=pytest.mark.xfail),
|
||
|
],
|
||
|
)
|
||
|
def test_size_axis_1(df, axis_1, by, sort, dropna):
|
||
|
# GH#45715
|
||
|
counts = {key: sum(value == key for value in by) for key in dict.fromkeys(by)}
|
||
|
if dropna:
|
||
|
counts = {key: value for key, value in counts.items() if key is not None}
|
||
|
expected = Series(counts, dtype="int64")
|
||
|
if sort:
|
||
|
expected = expected.sort_index()
|
||
|
if tm.is_integer_dtype(expected.index) and not any(x is None for x in by):
|
||
|
expected.index = expected.index.astype(np.int_)
|
||
|
|
||
|
grouped = df.groupby(by=by, axis=axis_1, sort=sort, dropna=dropna)
|
||
|
result = grouped.size()
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("by", ["A", "B", ["A", "B"]])
|
||
|
@pytest.mark.parametrize("sort", [True, False])
|
||
|
def test_size_sort(sort, by):
|
||
|
df = DataFrame(np.random.choice(20, (1000, 3)), columns=list("ABC"))
|
||
|
left = df.groupby(by=by, sort=sort).size()
|
||
|
right = df.groupby(by=by, sort=sort)["C"].apply(lambda a: a.shape[0])
|
||
|
tm.assert_series_equal(left, right, check_names=False)
|
||
|
|
||
|
|
||
|
def test_size_series_dataframe():
|
||
|
# https://github.com/pandas-dev/pandas/issues/11699
|
||
|
df = DataFrame(columns=["A", "B"])
|
||
|
out = Series(dtype="int64", index=Index([], name="A"))
|
||
|
tm.assert_series_equal(df.groupby("A").size(), out)
|
||
|
|
||
|
|
||
|
def test_size_groupby_all_null():
|
||
|
# https://github.com/pandas-dev/pandas/issues/23050
|
||
|
# Assert no 'Value Error : Length of passed values is 2, index implies 0'
|
||
|
df = DataFrame({"A": [None, None]}) # all-null groups
|
||
|
result = df.groupby("A").size()
|
||
|
expected = Series(dtype="int64", index=Index([], name="A"))
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_size_period_index():
|
||
|
# https://github.com/pandas-dev/pandas/issues/34010
|
||
|
ser = Series([1], index=PeriodIndex(["2000"], name="A", freq="D"))
|
||
|
grp = ser.groupby(level="A")
|
||
|
result = grp.size()
|
||
|
tm.assert_series_equal(result, ser)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("as_index", [True, False])
|
||
|
def test_size_on_categorical(as_index):
|
||
|
df = DataFrame([[1, 1], [2, 2]], columns=["A", "B"])
|
||
|
df["A"] = df["A"].astype("category")
|
||
|
result = df.groupby(["A", "B"], as_index=as_index).size()
|
||
|
|
||
|
expected = DataFrame(
|
||
|
[[1, 1, 1], [1, 2, 0], [2, 1, 0], [2, 2, 1]], columns=["A", "B", "size"]
|
||
|
)
|
||
|
expected["A"] = expected["A"].astype("category")
|
||
|
if as_index:
|
||
|
expected = expected.set_index(["A", "B"])["size"].rename(None)
|
||
|
|
||
|
tm.assert_equal(result, expected)
|