Inzynierka/Lib/site-packages/pandas/tests/indexes/interval/test_interval.py

935 lines
34 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
from itertools import permutations
import re
import numpy as np
import pytest
import pandas as pd
from pandas import (
Index,
Interval,
IntervalIndex,
Timedelta,
Timestamp,
date_range,
interval_range,
isna,
notna,
timedelta_range,
)
import pandas._testing as tm
import pandas.core.common as com
@pytest.fixture(params=[None, "foo"])
def name(request):
return request.param
class TestIntervalIndex:
index = IntervalIndex.from_arrays([0, 1], [1, 2])
def create_index(self, closed="right"):
return IntervalIndex.from_breaks(range(11), closed=closed)
def create_index_with_nan(self, closed="right"):
mask = [True, False] + [True] * 8
return IntervalIndex.from_arrays(
np.where(mask, np.arange(10), np.nan),
np.where(mask, np.arange(1, 11), np.nan),
closed=closed,
)
def test_properties(self, closed):
index = self.create_index(closed=closed)
assert len(index) == 10
assert index.size == 10
assert index.shape == (10,)
tm.assert_index_equal(index.left, Index(np.arange(10, dtype=np.int64)))
tm.assert_index_equal(index.right, Index(np.arange(1, 11, dtype=np.int64)))
tm.assert_index_equal(index.mid, Index(np.arange(0.5, 10.5, dtype=np.float64)))
assert index.closed == closed
ivs = [
Interval(left, right, closed)
for left, right in zip(range(10), range(1, 11))
]
expected = np.array(ivs, dtype=object)
tm.assert_numpy_array_equal(np.asarray(index), expected)
# with nans
index = self.create_index_with_nan(closed=closed)
assert len(index) == 10
assert index.size == 10
assert index.shape == (10,)
expected_left = Index([0, np.nan, 2, 3, 4, 5, 6, 7, 8, 9])
expected_right = expected_left + 1
expected_mid = expected_left + 0.5
tm.assert_index_equal(index.left, expected_left)
tm.assert_index_equal(index.right, expected_right)
tm.assert_index_equal(index.mid, expected_mid)
assert index.closed == closed
ivs = [
Interval(left, right, closed) if notna(left) else np.nan
for left, right in zip(expected_left, expected_right)
]
expected = np.array(ivs, dtype=object)
tm.assert_numpy_array_equal(np.asarray(index), expected)
@pytest.mark.parametrize(
"breaks",
[
[1, 1, 2, 5, 15, 53, 217, 1014, 5335, 31240, 201608],
[-np.inf, -100, -10, 0.5, 1, 1.5, 3.8, 101, 202, np.inf],
pd.to_datetime(["20170101", "20170202", "20170303", "20170404"]),
pd.to_timedelta(["1ns", "2ms", "3s", "4min", "5H", "6D"]),
],
)
def test_length(self, closed, breaks):
# GH 18789
index = IntervalIndex.from_breaks(breaks, closed=closed)
result = index.length
expected = Index(iv.length for iv in index)
tm.assert_index_equal(result, expected)
# with NA
index = index.insert(1, np.nan)
result = index.length
expected = Index(iv.length if notna(iv) else iv for iv in index)
tm.assert_index_equal(result, expected)
def test_with_nans(self, closed):
index = self.create_index(closed=closed)
assert index.hasnans is False
result = index.isna()
expected = np.zeros(len(index), dtype=bool)
tm.assert_numpy_array_equal(result, expected)
result = index.notna()
expected = np.ones(len(index), dtype=bool)
tm.assert_numpy_array_equal(result, expected)
index = self.create_index_with_nan(closed=closed)
assert index.hasnans is True
result = index.isna()
expected = np.array([False, True] + [False] * (len(index) - 2))
tm.assert_numpy_array_equal(result, expected)
result = index.notna()
expected = np.array([True, False] + [True] * (len(index) - 2))
tm.assert_numpy_array_equal(result, expected)
def test_copy(self, closed):
expected = self.create_index(closed=closed)
result = expected.copy()
assert result.equals(expected)
result = expected.copy(deep=True)
assert result.equals(expected)
assert result.left is not expected.left
def test_ensure_copied_data(self, closed):
# exercise the copy flag in the constructor
# not copying
index = self.create_index(closed=closed)
result = IntervalIndex(index, copy=False)
tm.assert_numpy_array_equal(
index.left.values, result.left.values, check_same="same"
)
tm.assert_numpy_array_equal(
index.right.values, result.right.values, check_same="same"
)
# by-definition make a copy
result = IntervalIndex(np.array(index), copy=False)
tm.assert_numpy_array_equal(
index.left.values, result.left.values, check_same="copy"
)
tm.assert_numpy_array_equal(
index.right.values, result.right.values, check_same="copy"
)
def test_delete(self, closed):
breaks = np.arange(1, 11, dtype=np.int64)
expected = IntervalIndex.from_breaks(breaks, closed=closed)
result = self.create_index(closed=closed).delete(0)
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize(
"data",
[
interval_range(0, periods=10, closed="neither"),
interval_range(1.7, periods=8, freq=2.5, closed="both"),
interval_range(Timestamp("20170101"), periods=12, closed="left"),
interval_range(Timedelta("1 day"), periods=6, closed="right"),
],
)
def test_insert(self, data):
item = data[0]
idx_item = IntervalIndex([item])
# start
expected = idx_item.append(data)
result = data.insert(0, item)
tm.assert_index_equal(result, expected)
# end
expected = data.append(idx_item)
result = data.insert(len(data), item)
tm.assert_index_equal(result, expected)
# mid
expected = data[:3].append(idx_item).append(data[3:])
result = data.insert(3, item)
tm.assert_index_equal(result, expected)
# invalid type
res = data.insert(1, "foo")
expected = data.astype(object).insert(1, "foo")
tm.assert_index_equal(res, expected)
msg = "can only insert Interval objects and NA into an IntervalArray"
with pytest.raises(TypeError, match=msg):
data._data.insert(1, "foo")
# invalid closed
msg = "'value.closed' is 'left', expected 'right'."
for closed in {"left", "right", "both", "neither"} - {item.closed}:
msg = f"'value.closed' is '{closed}', expected '{item.closed}'."
bad_item = Interval(item.left, item.right, closed=closed)
res = data.insert(1, bad_item)
expected = data.astype(object).insert(1, bad_item)
tm.assert_index_equal(res, expected)
with pytest.raises(ValueError, match=msg):
data._data.insert(1, bad_item)
# GH 18295 (test missing)
na_idx = IntervalIndex([np.nan], closed=data.closed)
for na in [np.nan, None, pd.NA]:
expected = data[:1].append(na_idx).append(data[1:])
result = data.insert(1, na)
tm.assert_index_equal(result, expected)
if data.left.dtype.kind not in ["m", "M"]:
# trying to insert pd.NaT into a numeric-dtyped Index should cast
expected = data.astype(object).insert(1, pd.NaT)
msg = "can only insert Interval objects and NA into an IntervalArray"
with pytest.raises(TypeError, match=msg):
data._data.insert(1, pd.NaT)
result = data.insert(1, pd.NaT)
tm.assert_index_equal(result, expected)
def test_is_unique_interval(self, closed):
"""
Interval specific tests for is_unique in addition to base class tests
"""
# unique overlapping - distinct endpoints
idx = IntervalIndex.from_tuples([(0, 1), (0.5, 1.5)], closed=closed)
assert idx.is_unique is True
# unique overlapping - shared endpoints
idx = IntervalIndex.from_tuples([(1, 2), (1, 3), (2, 3)], closed=closed)
assert idx.is_unique is True
# unique nested
idx = IntervalIndex.from_tuples([(-1, 1), (-2, 2)], closed=closed)
assert idx.is_unique is True
# unique NaN
idx = IntervalIndex.from_tuples([(np.NaN, np.NaN)], closed=closed)
assert idx.is_unique is True
# non-unique NaN
idx = IntervalIndex.from_tuples(
[(np.NaN, np.NaN), (np.NaN, np.NaN)], closed=closed
)
assert idx.is_unique is False
def test_monotonic(self, closed):
# increasing non-overlapping
idx = IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)], closed=closed)
assert idx.is_monotonic_increasing is True
assert idx._is_strictly_monotonic_increasing is True
assert idx.is_monotonic_decreasing is False
assert idx._is_strictly_monotonic_decreasing is False
# decreasing non-overlapping
idx = IntervalIndex.from_tuples([(4, 5), (2, 3), (1, 2)], closed=closed)
assert idx.is_monotonic_increasing is False
assert idx._is_strictly_monotonic_increasing is False
assert idx.is_monotonic_decreasing is True
assert idx._is_strictly_monotonic_decreasing is True
# unordered non-overlapping
idx = IntervalIndex.from_tuples([(0, 1), (4, 5), (2, 3)], closed=closed)
assert idx.is_monotonic_increasing is False
assert idx._is_strictly_monotonic_increasing is False
assert idx.is_monotonic_decreasing is False
assert idx._is_strictly_monotonic_decreasing is False
# increasing overlapping
idx = IntervalIndex.from_tuples([(0, 2), (0.5, 2.5), (1, 3)], closed=closed)
assert idx.is_monotonic_increasing is True
assert idx._is_strictly_monotonic_increasing is True
assert idx.is_monotonic_decreasing is False
assert idx._is_strictly_monotonic_decreasing is False
# decreasing overlapping
idx = IntervalIndex.from_tuples([(1, 3), (0.5, 2.5), (0, 2)], closed=closed)
assert idx.is_monotonic_increasing is False
assert idx._is_strictly_monotonic_increasing is False
assert idx.is_monotonic_decreasing is True
assert idx._is_strictly_monotonic_decreasing is True
# unordered overlapping
idx = IntervalIndex.from_tuples([(0.5, 2.5), (0, 2), (1, 3)], closed=closed)
assert idx.is_monotonic_increasing is False
assert idx._is_strictly_monotonic_increasing is False
assert idx.is_monotonic_decreasing is False
assert idx._is_strictly_monotonic_decreasing is False
# increasing overlapping shared endpoints
idx = IntervalIndex.from_tuples([(1, 2), (1, 3), (2, 3)], closed=closed)
assert idx.is_monotonic_increasing is True
assert idx._is_strictly_monotonic_increasing is True
assert idx.is_monotonic_decreasing is False
assert idx._is_strictly_monotonic_decreasing is False
# decreasing overlapping shared endpoints
idx = IntervalIndex.from_tuples([(2, 3), (1, 3), (1, 2)], closed=closed)
assert idx.is_monotonic_increasing is False
assert idx._is_strictly_monotonic_increasing is False
assert idx.is_monotonic_decreasing is True
assert idx._is_strictly_monotonic_decreasing is True
# stationary
idx = IntervalIndex.from_tuples([(0, 1), (0, 1)], closed=closed)
assert idx.is_monotonic_increasing is True
assert idx._is_strictly_monotonic_increasing is False
assert idx.is_monotonic_decreasing is True
assert idx._is_strictly_monotonic_decreasing is False
# empty
idx = IntervalIndex([], closed=closed)
assert idx.is_monotonic_increasing is True
assert idx._is_strictly_monotonic_increasing is True
assert idx.is_monotonic_decreasing is True
assert idx._is_strictly_monotonic_decreasing is True
def test_is_monotonic_with_nans(self):
# GH#41831
index = IntervalIndex([np.nan, np.nan])
assert not index.is_monotonic_increasing
assert not index._is_strictly_monotonic_increasing
assert not index.is_monotonic_increasing
assert not index._is_strictly_monotonic_decreasing
assert not index.is_monotonic_decreasing
def test_get_item(self, closed):
i = IntervalIndex.from_arrays((0, 1, np.nan), (1, 2, np.nan), closed=closed)
assert i[0] == Interval(0.0, 1.0, closed=closed)
assert i[1] == Interval(1.0, 2.0, closed=closed)
assert isna(i[2])
result = i[0:1]
expected = IntervalIndex.from_arrays((0.0,), (1.0,), closed=closed)
tm.assert_index_equal(result, expected)
result = i[0:2]
expected = IntervalIndex.from_arrays((0.0, 1), (1.0, 2.0), closed=closed)
tm.assert_index_equal(result, expected)
result = i[1:3]
expected = IntervalIndex.from_arrays(
(1.0, np.nan), (2.0, np.nan), closed=closed
)
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize(
"breaks",
[
date_range("20180101", periods=4),
date_range("20180101", periods=4, tz="US/Eastern"),
timedelta_range("0 days", periods=4),
],
ids=lambda x: str(x.dtype),
)
def test_maybe_convert_i8(self, breaks):
# GH 20636
index = IntervalIndex.from_breaks(breaks)
# intervalindex
result = index._maybe_convert_i8(index)
expected = IntervalIndex.from_breaks(breaks.asi8)
tm.assert_index_equal(result, expected)
# interval
interval = Interval(breaks[0], breaks[1])
result = index._maybe_convert_i8(interval)
expected = Interval(breaks[0]._value, breaks[1]._value)
assert result == expected
# datetimelike index
result = index._maybe_convert_i8(breaks)
expected = Index(breaks.asi8)
tm.assert_index_equal(result, expected)
# datetimelike scalar
result = index._maybe_convert_i8(breaks[0])
expected = breaks[0]._value
assert result == expected
# list-like of datetimelike scalars
result = index._maybe_convert_i8(list(breaks))
expected = Index(breaks.asi8)
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize(
"breaks",
[date_range("2018-01-01", periods=5), timedelta_range("0 days", periods=5)],
)
def test_maybe_convert_i8_nat(self, breaks):
# GH 20636
index = IntervalIndex.from_breaks(breaks)
to_convert = breaks._constructor([pd.NaT] * 3)
expected = Index([np.nan] * 3, dtype=np.float64)
result = index._maybe_convert_i8(to_convert)
tm.assert_index_equal(result, expected)
to_convert = to_convert.insert(0, breaks[0])
expected = expected.insert(0, float(breaks[0]._value))
result = index._maybe_convert_i8(to_convert)
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize(
"make_key",
[lambda breaks: breaks, list],
ids=["lambda", "list"],
)
def test_maybe_convert_i8_numeric(self, make_key, any_real_numpy_dtype):
# GH 20636
breaks = np.arange(5, dtype=any_real_numpy_dtype)
index = IntervalIndex.from_breaks(breaks)
key = make_key(breaks)
result = index._maybe_convert_i8(key)
kind = breaks.dtype.kind
expected_dtype = {"i": np.int64, "u": np.uint64, "f": np.float64}[kind]
expected = Index(key, dtype=expected_dtype)
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize(
"make_key",
[
IntervalIndex.from_breaks,
lambda breaks: Interval(breaks[0], breaks[1]),
lambda breaks: breaks[0],
],
ids=["IntervalIndex", "Interval", "scalar"],
)
def test_maybe_convert_i8_numeric_identical(self, make_key, any_real_numpy_dtype):
# GH 20636
breaks = np.arange(5, dtype=any_real_numpy_dtype)
index = IntervalIndex.from_breaks(breaks)
key = make_key(breaks)
# test if _maybe_convert_i8 won't change key if an Interval or IntervalIndex
result = index._maybe_convert_i8(key)
assert result is key
@pytest.mark.parametrize(
"breaks1, breaks2",
permutations(
[
date_range("20180101", periods=4),
date_range("20180101", periods=4, tz="US/Eastern"),
timedelta_range("0 days", periods=4),
],
2,
),
ids=lambda x: str(x.dtype),
)
@pytest.mark.parametrize(
"make_key",
[
IntervalIndex.from_breaks,
lambda breaks: Interval(breaks[0], breaks[1]),
lambda breaks: breaks,
lambda breaks: breaks[0],
list,
],
ids=["IntervalIndex", "Interval", "Index", "scalar", "list"],
)
def test_maybe_convert_i8_errors(self, breaks1, breaks2, make_key):
# GH 20636
index = IntervalIndex.from_breaks(breaks1)
key = make_key(breaks2)
msg = (
f"Cannot index an IntervalIndex of subtype {breaks1.dtype} with "
f"values of dtype {breaks2.dtype}"
)
msg = re.escape(msg)
with pytest.raises(ValueError, match=msg):
index._maybe_convert_i8(key)
def test_contains_method(self):
# can select values that are IN the range of a value
i = IntervalIndex.from_arrays([0, 1], [1, 2])
expected = np.array([False, False], dtype="bool")
actual = i.contains(0)
tm.assert_numpy_array_equal(actual, expected)
actual = i.contains(3)
tm.assert_numpy_array_equal(actual, expected)
expected = np.array([True, False], dtype="bool")
actual = i.contains(0.5)
tm.assert_numpy_array_equal(actual, expected)
actual = i.contains(1)
tm.assert_numpy_array_equal(actual, expected)
# __contains__ not implemented for "interval in interval", follow
# that for the contains method for now
with pytest.raises(
NotImplementedError, match="contains not implemented for two"
):
i.contains(Interval(0, 1))
def test_dropna(self, closed):
expected = IntervalIndex.from_tuples([(0.0, 1.0), (1.0, 2.0)], closed=closed)
ii = IntervalIndex.from_tuples([(0, 1), (1, 2), np.nan], closed=closed)
result = ii.dropna()
tm.assert_index_equal(result, expected)
ii = IntervalIndex.from_arrays([0, 1, np.nan], [1, 2, np.nan], closed=closed)
result = ii.dropna()
tm.assert_index_equal(result, expected)
def test_non_contiguous(self, closed):
index = IntervalIndex.from_tuples([(0, 1), (2, 3)], closed=closed)
target = [0.5, 1.5, 2.5]
actual = index.get_indexer(target)
expected = np.array([0, -1, 1], dtype="intp")
tm.assert_numpy_array_equal(actual, expected)
assert 1.5 not in index
def test_isin(self, closed):
index = self.create_index(closed=closed)
expected = np.array([True] + [False] * (len(index) - 1))
result = index.isin(index[:1])
tm.assert_numpy_array_equal(result, expected)
result = index.isin([index[0]])
tm.assert_numpy_array_equal(result, expected)
other = IntervalIndex.from_breaks(np.arange(-2, 10), closed=closed)
expected = np.array([True] * (len(index) - 1) + [False])
result = index.isin(other)
tm.assert_numpy_array_equal(result, expected)
result = index.isin(other.tolist())
tm.assert_numpy_array_equal(result, expected)
for other_closed in ["right", "left", "both", "neither"]:
other = self.create_index(closed=other_closed)
expected = np.repeat(closed == other_closed, len(index))
result = index.isin(other)
tm.assert_numpy_array_equal(result, expected)
result = index.isin(other.tolist())
tm.assert_numpy_array_equal(result, expected)
def test_comparison(self):
actual = Interval(0, 1) < self.index
expected = np.array([False, True])
tm.assert_numpy_array_equal(actual, expected)
actual = Interval(0.5, 1.5) < self.index
expected = np.array([False, True])
tm.assert_numpy_array_equal(actual, expected)
actual = self.index > Interval(0.5, 1.5)
tm.assert_numpy_array_equal(actual, expected)
actual = self.index == self.index
expected = np.array([True, True])
tm.assert_numpy_array_equal(actual, expected)
actual = self.index <= self.index
tm.assert_numpy_array_equal(actual, expected)
actual = self.index >= self.index
tm.assert_numpy_array_equal(actual, expected)
actual = self.index < self.index
expected = np.array([False, False])
tm.assert_numpy_array_equal(actual, expected)
actual = self.index > self.index
tm.assert_numpy_array_equal(actual, expected)
actual = self.index == IntervalIndex.from_breaks([0, 1, 2], "left")
tm.assert_numpy_array_equal(actual, expected)
actual = self.index == self.index.values
tm.assert_numpy_array_equal(actual, np.array([True, True]))
actual = self.index.values == self.index
tm.assert_numpy_array_equal(actual, np.array([True, True]))
actual = self.index <= self.index.values
tm.assert_numpy_array_equal(actual, np.array([True, True]))
actual = self.index != self.index.values
tm.assert_numpy_array_equal(actual, np.array([False, False]))
actual = self.index > self.index.values
tm.assert_numpy_array_equal(actual, np.array([False, False]))
actual = self.index.values > self.index
tm.assert_numpy_array_equal(actual, np.array([False, False]))
# invalid comparisons
actual = self.index == 0
tm.assert_numpy_array_equal(actual, np.array([False, False]))
actual = self.index == self.index.left
tm.assert_numpy_array_equal(actual, np.array([False, False]))
msg = "|".join(
[
"not supported between instances of 'int' and '.*.Interval'",
r"Invalid comparison between dtype=interval\[int64, right\] and ",
]
)
with pytest.raises(TypeError, match=msg):
self.index > 0
with pytest.raises(TypeError, match=msg):
self.index <= 0
with pytest.raises(TypeError, match=msg):
self.index > np.arange(2)
msg = "Lengths must match to compare"
with pytest.raises(ValueError, match=msg):
self.index > np.arange(3)
def test_missing_values(self, closed):
idx = Index(
[np.nan, Interval(0, 1, closed=closed), Interval(1, 2, closed=closed)]
)
idx2 = IntervalIndex.from_arrays([np.nan, 0, 1], [np.nan, 1, 2], closed=closed)
assert idx.equals(idx2)
msg = (
"missing values must be missing in the same location both left "
"and right sides"
)
with pytest.raises(ValueError, match=msg):
IntervalIndex.from_arrays(
[np.nan, 0, 1], np.array([0, 1, 2]), closed=closed
)
tm.assert_numpy_array_equal(isna(idx), np.array([True, False, False]))
def test_sort_values(self, closed):
index = self.create_index(closed=closed)
result = index.sort_values()
tm.assert_index_equal(result, index)
result = index.sort_values(ascending=False)
tm.assert_index_equal(result, index[::-1])
# with nan
index = IntervalIndex([Interval(1, 2), np.nan, Interval(0, 1)])
result = index.sort_values()
expected = IntervalIndex([Interval(0, 1), Interval(1, 2), np.nan])
tm.assert_index_equal(result, expected)
result = index.sort_values(ascending=False, na_position="first")
expected = IntervalIndex([np.nan, Interval(1, 2), Interval(0, 1)])
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize("tz", [None, "US/Eastern"])
def test_datetime(self, tz):
start = Timestamp("2000-01-01", tz=tz)
dates = date_range(start=start, periods=10)
index = IntervalIndex.from_breaks(dates)
# test mid
start = Timestamp("2000-01-01T12:00", tz=tz)
expected = date_range(start=start, periods=9)
tm.assert_index_equal(index.mid, expected)
# __contains__ doesn't check individual points
assert Timestamp("2000-01-01", tz=tz) not in index
assert Timestamp("2000-01-01T12", tz=tz) not in index
assert Timestamp("2000-01-02", tz=tz) not in index
iv_true = Interval(
Timestamp("2000-01-02", tz=tz), Timestamp("2000-01-03", tz=tz)
)
iv_false = Interval(
Timestamp("1999-12-31", tz=tz), Timestamp("2000-01-01", tz=tz)
)
assert iv_true in index
assert iv_false not in index
# .contains does check individual points
assert not index.contains(Timestamp("2000-01-01", tz=tz)).any()
assert index.contains(Timestamp("2000-01-01T12", tz=tz)).any()
assert index.contains(Timestamp("2000-01-02", tz=tz)).any()
# test get_indexer
start = Timestamp("1999-12-31T12:00", tz=tz)
target = date_range(start=start, periods=7, freq="12H")
actual = index.get_indexer(target)
expected = np.array([-1, -1, 0, 0, 1, 1, 2], dtype="intp")
tm.assert_numpy_array_equal(actual, expected)
start = Timestamp("2000-01-08T18:00", tz=tz)
target = date_range(start=start, periods=7, freq="6H")
actual = index.get_indexer(target)
expected = np.array([7, 7, 8, 8, 8, 8, -1], dtype="intp")
tm.assert_numpy_array_equal(actual, expected)
def test_append(self, closed):
index1 = IntervalIndex.from_arrays([0, 1], [1, 2], closed=closed)
index2 = IntervalIndex.from_arrays([1, 2], [2, 3], closed=closed)
result = index1.append(index2)
expected = IntervalIndex.from_arrays([0, 1, 1, 2], [1, 2, 2, 3], closed=closed)
tm.assert_index_equal(result, expected)
result = index1.append([index1, index2])
expected = IntervalIndex.from_arrays(
[0, 1, 0, 1, 1, 2], [1, 2, 1, 2, 2, 3], closed=closed
)
tm.assert_index_equal(result, expected)
for other_closed in {"left", "right", "both", "neither"} - {closed}:
index_other_closed = IntervalIndex.from_arrays(
[0, 1], [1, 2], closed=other_closed
)
result = index1.append(index_other_closed)
expected = index1.astype(object).append(index_other_closed.astype(object))
tm.assert_index_equal(result, expected)
def test_is_non_overlapping_monotonic(self, closed):
# Should be True in all cases
tpls = [(0, 1), (2, 3), (4, 5), (6, 7)]
idx = IntervalIndex.from_tuples(tpls, closed=closed)
assert idx.is_non_overlapping_monotonic is True
idx = IntervalIndex.from_tuples(tpls[::-1], closed=closed)
assert idx.is_non_overlapping_monotonic is True
# Should be False in all cases (overlapping)
tpls = [(0, 2), (1, 3), (4, 5), (6, 7)]
idx = IntervalIndex.from_tuples(tpls, closed=closed)
assert idx.is_non_overlapping_monotonic is False
idx = IntervalIndex.from_tuples(tpls[::-1], closed=closed)
assert idx.is_non_overlapping_monotonic is False
# Should be False in all cases (non-monotonic)
tpls = [(0, 1), (2, 3), (6, 7), (4, 5)]
idx = IntervalIndex.from_tuples(tpls, closed=closed)
assert idx.is_non_overlapping_monotonic is False
idx = IntervalIndex.from_tuples(tpls[::-1], closed=closed)
assert idx.is_non_overlapping_monotonic is False
# Should be False for closed='both', otherwise True (GH16560)
if closed == "both":
idx = IntervalIndex.from_breaks(range(4), closed=closed)
assert idx.is_non_overlapping_monotonic is False
else:
idx = IntervalIndex.from_breaks(range(4), closed=closed)
assert idx.is_non_overlapping_monotonic is True
@pytest.mark.parametrize(
"start, shift, na_value",
[
(0, 1, np.nan),
(Timestamp("2018-01-01"), Timedelta("1 day"), pd.NaT),
(Timedelta("0 days"), Timedelta("1 day"), pd.NaT),
],
)
def test_is_overlapping(self, start, shift, na_value, closed):
# GH 23309
# see test_interval_tree.py for extensive tests; interface tests here
# non-overlapping
tuples = [(start + n * shift, start + (n + 1) * shift) for n in (0, 2, 4)]
index = IntervalIndex.from_tuples(tuples, closed=closed)
assert index.is_overlapping is False
# non-overlapping with NA
tuples = [(na_value, na_value)] + tuples + [(na_value, na_value)]
index = IntervalIndex.from_tuples(tuples, closed=closed)
assert index.is_overlapping is False
# overlapping
tuples = [(start + n * shift, start + (n + 2) * shift) for n in range(3)]
index = IntervalIndex.from_tuples(tuples, closed=closed)
assert index.is_overlapping is True
# overlapping with NA
tuples = [(na_value, na_value)] + tuples + [(na_value, na_value)]
index = IntervalIndex.from_tuples(tuples, closed=closed)
assert index.is_overlapping is True
# common endpoints
tuples = [(start + n * shift, start + (n + 1) * shift) for n in range(3)]
index = IntervalIndex.from_tuples(tuples, closed=closed)
result = index.is_overlapping
expected = closed == "both"
assert result is expected
# common endpoints with NA
tuples = [(na_value, na_value)] + tuples + [(na_value, na_value)]
index = IntervalIndex.from_tuples(tuples, closed=closed)
result = index.is_overlapping
assert result is expected
# intervals with duplicate left values
a = [10, 15, 20, 25, 30, 35, 40, 45, 45, 50, 55, 60, 65, 70, 75, 80, 85]
b = [15, 20, 25, 30, 35, 40, 45, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90]
index = IntervalIndex.from_arrays(a, b, closed="right")
result = index.is_overlapping
assert result is False
@pytest.mark.parametrize(
"tuples",
[
list(zip(range(10), range(1, 11))),
list(
zip(
date_range("20170101", periods=10),
date_range("20170101", periods=10),
)
),
list(
zip(
timedelta_range("0 days", periods=10),
timedelta_range("1 day", periods=10),
)
),
],
)
def test_to_tuples(self, tuples):
# GH 18756
idx = IntervalIndex.from_tuples(tuples)
result = idx.to_tuples()
expected = Index(com.asarray_tuplesafe(tuples))
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize(
"tuples",
[
list(zip(range(10), range(1, 11))) + [np.nan],
list(
zip(
date_range("20170101", periods=10),
date_range("20170101", periods=10),
)
)
+ [np.nan],
list(
zip(
timedelta_range("0 days", periods=10),
timedelta_range("1 day", periods=10),
)
)
+ [np.nan],
],
)
@pytest.mark.parametrize("na_tuple", [True, False])
def test_to_tuples_na(self, tuples, na_tuple):
# GH 18756
idx = IntervalIndex.from_tuples(tuples)
result = idx.to_tuples(na_tuple=na_tuple)
# check the non-NA portion
expected_notna = Index(com.asarray_tuplesafe(tuples[:-1]))
result_notna = result[:-1]
tm.assert_index_equal(result_notna, expected_notna)
# check the NA portion
result_na = result[-1]
if na_tuple:
assert isinstance(result_na, tuple)
assert len(result_na) == 2
assert all(isna(x) for x in result_na)
else:
assert isna(result_na)
def test_nbytes(self):
# GH 19209
left = np.arange(0, 4, dtype="i8")
right = np.arange(1, 5, dtype="i8")
result = IntervalIndex.from_arrays(left, right).nbytes
expected = 64 # 4 * 8 * 2
assert result == expected
@pytest.mark.parametrize("new_closed", ["left", "right", "both", "neither"])
def test_set_closed(self, name, closed, new_closed):
# GH 21670
index = interval_range(0, 5, closed=closed, name=name)
result = index.set_closed(new_closed)
expected = interval_range(0, 5, closed=new_closed, name=name)
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize("bad_closed", ["foo", 10, "LEFT", True, False])
def test_set_closed_errors(self, bad_closed):
# GH 21670
index = interval_range(0, 5)
msg = f"invalid option for 'closed': {bad_closed}"
with pytest.raises(ValueError, match=msg):
index.set_closed(bad_closed)
def test_is_all_dates(self):
# GH 23576
year_2017 = Interval(
Timestamp("2017-01-01 00:00:00"), Timestamp("2018-01-01 00:00:00")
)
year_2017_index = IntervalIndex([year_2017])
assert not year_2017_index._is_all_dates
def test_dir():
# GH#27571 dir(interval_index) should not raise
index = IntervalIndex.from_arrays([0, 1], [1, 2])
result = dir(index)
assert "str" not in result
def test_searchsorted_different_argument_classes(listlike_box):
# https://github.com/pandas-dev/pandas/issues/32762
values = IntervalIndex([Interval(0, 1), Interval(1, 2)])
result = values.searchsorted(listlike_box(values))
expected = np.array([0, 1], dtype=result.dtype)
tm.assert_numpy_array_equal(result, expected)
result = values._data.searchsorted(listlike_box(values))
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize(
"arg", [[1, 2], ["a", "b"], [Timestamp("2020-01-01", tz="Europe/London")] * 2]
)
def test_searchsorted_invalid_argument(arg):
values = IntervalIndex([Interval(0, 1), Interval(1, 2)])
msg = "'<' not supported between instances of 'pandas._libs.interval.Interval' and "
with pytest.raises(TypeError, match=msg):
values.searchsorted(arg)