Inzynierka/Lib/site-packages/pandas/tests/io/test_orc.py

396 lines
12 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
""" test orc compat """
import datetime
from decimal import Decimal
from io import BytesIO
import os
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import read_orc
import pandas._testing as tm
from pandas.core.arrays import StringArray
pytest.importorskip("pyarrow.orc")
import pyarrow as pa
@pytest.fixture
def dirpath(datapath):
return datapath("io", "data", "orc")
# Examples of dataframes with dtypes for which conversion to ORC
# hasn't been implemented yet, that is, Category, unsigned integers,
# interval, period and sparse.
orc_writer_dtypes_not_supported = [
pd.DataFrame({"unimpl": np.array([1, 20], dtype="uint64")}),
pd.DataFrame({"unimpl": pd.Series(["a", "b", "a"], dtype="category")}),
pd.DataFrame(
{"unimpl": [pd.Interval(left=0, right=2), pd.Interval(left=0, right=5)]}
),
pd.DataFrame(
{
"unimpl": [
pd.Period("2022-01-03", freq="D"),
pd.Period("2022-01-04", freq="D"),
]
}
),
pd.DataFrame({"unimpl": [np.nan] * 50}).astype(pd.SparseDtype("float", np.nan)),
]
def test_orc_reader_empty(dirpath):
columns = [
"boolean1",
"byte1",
"short1",
"int1",
"long1",
"float1",
"double1",
"bytes1",
"string1",
]
dtypes = [
"bool",
"int8",
"int16",
"int32",
"int64",
"float32",
"float64",
"object",
"object",
]
expected = pd.DataFrame(index=pd.RangeIndex(0))
for colname, dtype in zip(columns, dtypes):
expected[colname] = pd.Series(dtype=dtype)
inputfile = os.path.join(dirpath, "TestOrcFile.emptyFile.orc")
got = read_orc(inputfile, columns=columns)
tm.assert_equal(expected, got)
def test_orc_reader_basic(dirpath):
data = {
"boolean1": np.array([False, True], dtype="bool"),
"byte1": np.array([1, 100], dtype="int8"),
"short1": np.array([1024, 2048], dtype="int16"),
"int1": np.array([65536, 65536], dtype="int32"),
"long1": np.array([9223372036854775807, 9223372036854775807], dtype="int64"),
"float1": np.array([1.0, 2.0], dtype="float32"),
"double1": np.array([-15.0, -5.0], dtype="float64"),
"bytes1": np.array([b"\x00\x01\x02\x03\x04", b""], dtype="object"),
"string1": np.array(["hi", "bye"], dtype="object"),
}
expected = pd.DataFrame.from_dict(data)
inputfile = os.path.join(dirpath, "TestOrcFile.test1.orc")
got = read_orc(inputfile, columns=data.keys())
tm.assert_equal(expected, got)
def test_orc_reader_decimal(dirpath):
# Only testing the first 10 rows of data
data = {
"_col0": np.array(
[
Decimal("-1000.50000"),
Decimal("-999.60000"),
Decimal("-998.70000"),
Decimal("-997.80000"),
Decimal("-996.90000"),
Decimal("-995.10000"),
Decimal("-994.11000"),
Decimal("-993.12000"),
Decimal("-992.13000"),
Decimal("-991.14000"),
],
dtype="object",
)
}
expected = pd.DataFrame.from_dict(data)
inputfile = os.path.join(dirpath, "TestOrcFile.decimal.orc")
got = read_orc(inputfile).iloc[:10]
tm.assert_equal(expected, got)
def test_orc_reader_date_low(dirpath):
data = {
"time": np.array(
[
"1900-05-05 12:34:56.100000",
"1900-05-05 12:34:56.100100",
"1900-05-05 12:34:56.100200",
"1900-05-05 12:34:56.100300",
"1900-05-05 12:34:56.100400",
"1900-05-05 12:34:56.100500",
"1900-05-05 12:34:56.100600",
"1900-05-05 12:34:56.100700",
"1900-05-05 12:34:56.100800",
"1900-05-05 12:34:56.100900",
],
dtype="datetime64[ns]",
),
"date": np.array(
[
datetime.date(1900, 12, 25),
datetime.date(1900, 12, 25),
datetime.date(1900, 12, 25),
datetime.date(1900, 12, 25),
datetime.date(1900, 12, 25),
datetime.date(1900, 12, 25),
datetime.date(1900, 12, 25),
datetime.date(1900, 12, 25),
datetime.date(1900, 12, 25),
datetime.date(1900, 12, 25),
],
dtype="object",
),
}
expected = pd.DataFrame.from_dict(data)
inputfile = os.path.join(dirpath, "TestOrcFile.testDate1900.orc")
got = read_orc(inputfile).iloc[:10]
tm.assert_equal(expected, got)
def test_orc_reader_date_high(dirpath):
data = {
"time": np.array(
[
"2038-05-05 12:34:56.100000",
"2038-05-05 12:34:56.100100",
"2038-05-05 12:34:56.100200",
"2038-05-05 12:34:56.100300",
"2038-05-05 12:34:56.100400",
"2038-05-05 12:34:56.100500",
"2038-05-05 12:34:56.100600",
"2038-05-05 12:34:56.100700",
"2038-05-05 12:34:56.100800",
"2038-05-05 12:34:56.100900",
],
dtype="datetime64[ns]",
),
"date": np.array(
[
datetime.date(2038, 12, 25),
datetime.date(2038, 12, 25),
datetime.date(2038, 12, 25),
datetime.date(2038, 12, 25),
datetime.date(2038, 12, 25),
datetime.date(2038, 12, 25),
datetime.date(2038, 12, 25),
datetime.date(2038, 12, 25),
datetime.date(2038, 12, 25),
datetime.date(2038, 12, 25),
],
dtype="object",
),
}
expected = pd.DataFrame.from_dict(data)
inputfile = os.path.join(dirpath, "TestOrcFile.testDate2038.orc")
got = read_orc(inputfile).iloc[:10]
tm.assert_equal(expected, got)
def test_orc_reader_snappy_compressed(dirpath):
data = {
"int1": np.array(
[
-1160101563,
1181413113,
2065821249,
-267157795,
172111193,
1752363137,
1406072123,
1911809390,
-1308542224,
-467100286,
],
dtype="int32",
),
"string1": np.array(
[
"f50dcb8",
"382fdaaa",
"90758c6",
"9e8caf3f",
"ee97332b",
"d634da1",
"2bea4396",
"d67d89e8",
"ad71007e",
"e8c82066",
],
dtype="object",
),
}
expected = pd.DataFrame.from_dict(data)
inputfile = os.path.join(dirpath, "TestOrcFile.testSnappy.orc")
got = read_orc(inputfile).iloc[:10]
tm.assert_equal(expected, got)
@td.skip_if_no("pyarrow", min_version="7.0.0")
def test_orc_roundtrip_file(dirpath):
# GH44554
# PyArrow gained ORC write support with the current argument order
data = {
"boolean1": np.array([False, True], dtype="bool"),
"byte1": np.array([1, 100], dtype="int8"),
"short1": np.array([1024, 2048], dtype="int16"),
"int1": np.array([65536, 65536], dtype="int32"),
"long1": np.array([9223372036854775807, 9223372036854775807], dtype="int64"),
"float1": np.array([1.0, 2.0], dtype="float32"),
"double1": np.array([-15.0, -5.0], dtype="float64"),
"bytes1": np.array([b"\x00\x01\x02\x03\x04", b""], dtype="object"),
"string1": np.array(["hi", "bye"], dtype="object"),
}
expected = pd.DataFrame.from_dict(data)
with tm.ensure_clean() as path:
expected.to_orc(path)
got = read_orc(path)
tm.assert_equal(expected, got)
@td.skip_if_no("pyarrow", min_version="7.0.0")
def test_orc_roundtrip_bytesio():
# GH44554
# PyArrow gained ORC write support with the current argument order
data = {
"boolean1": np.array([False, True], dtype="bool"),
"byte1": np.array([1, 100], dtype="int8"),
"short1": np.array([1024, 2048], dtype="int16"),
"int1": np.array([65536, 65536], dtype="int32"),
"long1": np.array([9223372036854775807, 9223372036854775807], dtype="int64"),
"float1": np.array([1.0, 2.0], dtype="float32"),
"double1": np.array([-15.0, -5.0], dtype="float64"),
"bytes1": np.array([b"\x00\x01\x02\x03\x04", b""], dtype="object"),
"string1": np.array(["hi", "bye"], dtype="object"),
}
expected = pd.DataFrame.from_dict(data)
bytes = expected.to_orc()
got = read_orc(BytesIO(bytes))
tm.assert_equal(expected, got)
@td.skip_if_no("pyarrow", min_version="7.0.0")
@pytest.mark.parametrize("df_not_supported", orc_writer_dtypes_not_supported)
def test_orc_writer_dtypes_not_supported(df_not_supported):
# GH44554
# PyArrow gained ORC write support with the current argument order
msg = "The dtype of one or more columns is not supported yet."
with pytest.raises(NotImplementedError, match=msg):
df_not_supported.to_orc()
@td.skip_if_no("pyarrow", min_version="7.0.0")
def test_orc_dtype_backend_pyarrow():
df = pd.DataFrame(
{
"string": list("abc"),
"string_with_nan": ["a", np.nan, "c"],
"string_with_none": ["a", None, "c"],
"bytes": [b"foo", b"bar", None],
"int": list(range(1, 4)),
"float": np.arange(4.0, 7.0, dtype="float64"),
"float_with_nan": [2.0, np.nan, 3.0],
"bool": [True, False, True],
"bool_with_na": [True, False, None],
"datetime": pd.date_range("20130101", periods=3),
"datetime_with_nat": [
pd.Timestamp("20130101"),
pd.NaT,
pd.Timestamp("20130103"),
],
}
)
bytes_data = df.copy().to_orc()
result = read_orc(BytesIO(bytes_data), dtype_backend="pyarrow")
expected = pd.DataFrame(
{
col: pd.arrays.ArrowExtensionArray(pa.array(df[col], from_pandas=True))
for col in df.columns
}
)
tm.assert_frame_equal(result, expected)
@td.skip_if_no("pyarrow", min_version="7.0.0")
def test_orc_dtype_backend_numpy_nullable():
# GH#50503
df = pd.DataFrame(
{
"string": list("abc"),
"string_with_nan": ["a", np.nan, "c"],
"string_with_none": ["a", None, "c"],
"int": list(range(1, 4)),
"int_with_nan": pd.Series([1, pd.NA, 3], dtype="Int64"),
"na_only": pd.Series([pd.NA, pd.NA, pd.NA], dtype="Int64"),
"float": np.arange(4.0, 7.0, dtype="float64"),
"float_with_nan": [2.0, np.nan, 3.0],
"bool": [True, False, True],
"bool_with_na": [True, False, None],
}
)
bytes_data = df.copy().to_orc()
result = read_orc(BytesIO(bytes_data), dtype_backend="numpy_nullable")
expected = pd.DataFrame(
{
"string": StringArray(np.array(["a", "b", "c"], dtype=np.object_)),
"string_with_nan": StringArray(
np.array(["a", pd.NA, "c"], dtype=np.object_)
),
"string_with_none": StringArray(
np.array(["a", pd.NA, "c"], dtype=np.object_)
),
"int": pd.Series([1, 2, 3], dtype="Int64"),
"int_with_nan": pd.Series([1, pd.NA, 3], dtype="Int64"),
"na_only": pd.Series([pd.NA, pd.NA, pd.NA], dtype="Int64"),
"float": pd.Series([4.0, 5.0, 6.0], dtype="Float64"),
"float_with_nan": pd.Series([2.0, pd.NA, 3.0], dtype="Float64"),
"bool": pd.Series([True, False, True], dtype="boolean"),
"bool_with_na": pd.Series([True, False, pd.NA], dtype="boolean"),
}
)
tm.assert_frame_equal(result, expected)
def test_invalid_dtype_backend():
msg = (
"dtype_backend numpy is invalid, only 'numpy_nullable' and "
"'pyarrow' are allowed."
)
df = pd.DataFrame({"int": list(range(1, 4))})
with tm.ensure_clean("tmp.orc") as path:
df.to_orc(path)
with pytest.raises(ValueError, match=msg):
read_orc(path, dtype_backend="numpy")