Inzynierka/Lib/site-packages/sklearn/neighbors/tests/test_neighbors.py

2262 lines
77 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
from itertools import product
from contextlib import nullcontext
import warnings
import pytest
import re
import numpy as np
from scipy.sparse import (
bsr_matrix,
coo_matrix,
csc_matrix,
csr_matrix,
dok_matrix,
dia_matrix,
lil_matrix,
issparse,
)
from sklearn import (
config_context,
datasets,
metrics,
neighbors,
)
from sklearn.base import clone
from sklearn.exceptions import DataConversionWarning
from sklearn.exceptions import EfficiencyWarning
from sklearn.exceptions import NotFittedError
from sklearn.metrics.pairwise import pairwise_distances
from sklearn.metrics.tests.test_dist_metrics import BOOL_METRICS
from sklearn.metrics.tests.test_pairwise_distances_reduction import (
assert_radius_neighbors_results_equality,
)
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import train_test_split
from sklearn.neighbors import (
VALID_METRICS_SPARSE,
KNeighborsRegressor,
)
from sklearn.neighbors._base import (
_is_sorted_by_data,
_check_precomputed,
sort_graph_by_row_values,
KNeighborsMixin,
)
from sklearn.pipeline import make_pipeline
from sklearn.utils._testing import (
assert_allclose,
assert_array_equal,
)
from sklearn.utils._testing import ignore_warnings
from sklearn.utils.validation import check_random_state
from sklearn.utils.fixes import sp_version, parse_version
import joblib
rng = np.random.RandomState(0)
# load and shuffle iris dataset
iris = datasets.load_iris()
perm = rng.permutation(iris.target.size)
iris.data = iris.data[perm]
iris.target = iris.target[perm]
# load and shuffle digits
digits = datasets.load_digits()
perm = rng.permutation(digits.target.size)
digits.data = digits.data[perm]
digits.target = digits.target[perm]
SPARSE_TYPES = (bsr_matrix, coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix)
SPARSE_OR_DENSE = SPARSE_TYPES + (np.asarray,)
ALGORITHMS = ("ball_tree", "brute", "kd_tree", "auto")
COMMON_VALID_METRICS = sorted(
set.intersection(*map(set, neighbors.VALID_METRICS.values()))
) # type: ignore
P = (1, 2, 3, 4, np.inf)
JOBLIB_BACKENDS = list(joblib.parallel.BACKENDS.keys())
# Filter deprecation warnings.
neighbors.kneighbors_graph = ignore_warnings(neighbors.kneighbors_graph)
neighbors.radius_neighbors_graph = ignore_warnings(neighbors.radius_neighbors_graph)
def _generate_test_params_for(metric: str, n_features: int):
"""Return list of DistanceMetric kwargs for tests."""
# Distinguishing on cases not to compute unneeded datastructures.
rng = np.random.RandomState(1)
weights = rng.random_sample(n_features)
if metric == "minkowski":
minkowski_kwargs = [dict(p=1.5), dict(p=2), dict(p=3), dict(p=np.inf)]
if sp_version >= parse_version("1.8.0.dev0"):
# TODO: remove the test once we no longer support scipy < 1.8.0.
# Recent scipy versions accept weights in the Minkowski metric directly:
# type: ignore
minkowski_kwargs.append(dict(p=3, w=rng.rand(n_features)))
return minkowski_kwargs
# TODO: remove this case for "wminkowski" once we no longer support scipy < 1.8.0.
if metric == "wminkowski":
weights /= weights.sum()
wminkowski_kwargs = [dict(p=1.5, w=weights)]
if sp_version < parse_version("1.8.0.dev0"):
# wminkowski was removed in scipy 1.8.0 but should work for previous
# versions.
wminkowski_kwargs.append(dict(p=3, w=rng.rand(n_features)))
return wminkowski_kwargs
if metric == "seuclidean":
return [dict(V=rng.rand(n_features))]
if metric == "mahalanobis":
A = rng.rand(n_features, n_features)
# Make the matrix symmetric positive definite
VI = A + A.T + 3 * np.eye(n_features)
return [dict(VI=VI)]
# Case of: "euclidean", "manhattan", "chebyshev", "haversine" or any other metric.
# In those cases, no kwargs are needed.
return [{}]
def _weight_func(dist):
"""Weight function to replace lambda d: d ** -2.
The lambda function is not valid because:
if d==0 then 0^-2 is not valid."""
# Dist could be multidimensional, flatten it so all values
# can be looped
with np.errstate(divide="ignore"):
retval = 1.0 / dist
return retval**2
WEIGHTS = ["uniform", "distance", _weight_func]
@pytest.mark.parametrize(
"n_samples, n_features, n_query_pts, n_neighbors",
[
(100, 100, 10, 100),
(1000, 5, 100, 1),
],
)
@pytest.mark.parametrize("query_is_train", [False, True])
@pytest.mark.parametrize("metric", COMMON_VALID_METRICS)
def test_unsupervised_kneighbors(
global_dtype,
n_samples,
n_features,
n_query_pts,
n_neighbors,
query_is_train,
metric,
):
# The different algorithms must return identical results
# on their common metrics, with and without returning
# distances
# Redefining the rng locally to use the same generated X
local_rng = np.random.RandomState(0)
X = local_rng.rand(n_samples, n_features).astype(global_dtype, copy=False)
query = (
X
if query_is_train
else local_rng.rand(n_query_pts, n_features).astype(global_dtype, copy=False)
)
results_nodist = []
results = []
for algorithm in ALGORITHMS:
neigh = neighbors.NearestNeighbors(
n_neighbors=n_neighbors, algorithm=algorithm, metric=metric
)
neigh.fit(X)
results_nodist.append(neigh.kneighbors(query, return_distance=False))
results.append(neigh.kneighbors(query, return_distance=True))
for i in range(len(results) - 1):
algorithm = ALGORITHMS[i]
next_algorithm = ALGORITHMS[i + 1]
indices_no_dist = results_nodist[i]
distances, next_distances = results[i][0], results[i + 1][0]
indices, next_indices = results[i][1], results[i + 1][1]
assert_array_equal(
indices_no_dist,
indices,
err_msg=(
f"The '{algorithm}' algorithm returns different"
"indices depending on 'return_distances'."
),
)
assert_array_equal(
indices,
next_indices,
err_msg=(
f"The '{algorithm}' and '{next_algorithm}' "
"algorithms return different indices."
),
)
assert_allclose(
distances,
next_distances,
err_msg=(
f"The '{algorithm}' and '{next_algorithm}' "
"algorithms return different distances."
),
atol=1e-6,
)
@pytest.mark.parametrize(
"n_samples, n_features, n_query_pts",
[
(100, 100, 10),
(1000, 5, 100),
],
)
@pytest.mark.parametrize("metric", COMMON_VALID_METRICS)
@pytest.mark.parametrize("n_neighbors, radius", [(1, 100), (50, 500), (100, 1000)])
@pytest.mark.parametrize(
"NeighborsMixinSubclass",
[
neighbors.KNeighborsClassifier,
neighbors.KNeighborsRegressor,
neighbors.RadiusNeighborsClassifier,
neighbors.RadiusNeighborsRegressor,
],
)
def test_neigh_predictions_algorithm_agnosticity(
global_dtype,
n_samples,
n_features,
n_query_pts,
metric,
n_neighbors,
radius,
NeighborsMixinSubclass,
):
# The different algorithms must return identical predictions results
# on their common metrics.
# Redefining the rng locally to use the same generated X
local_rng = np.random.RandomState(0)
X = local_rng.rand(n_samples, n_features).astype(global_dtype, copy=False)
y = local_rng.randint(3, size=n_samples)
query = local_rng.rand(n_query_pts, n_features).astype(global_dtype, copy=False)
predict_results = []
parameter = (
n_neighbors if issubclass(NeighborsMixinSubclass, KNeighborsMixin) else radius
)
for algorithm in ALGORITHMS:
neigh = NeighborsMixinSubclass(parameter, algorithm=algorithm, metric=metric)
neigh.fit(X, y)
predict_results.append(neigh.predict(query))
for i in range(len(predict_results) - 1):
algorithm = ALGORITHMS[i]
next_algorithm = ALGORITHMS[i + 1]
predictions, next_predictions = predict_results[i], predict_results[i + 1]
assert_allclose(
predictions,
next_predictions,
err_msg=(
f"The '{algorithm}' and '{next_algorithm}' "
"algorithms return different predictions."
),
)
@pytest.mark.parametrize(
"KNeighborsMixinSubclass",
[
neighbors.KNeighborsClassifier,
neighbors.KNeighborsRegressor,
neighbors.NearestNeighbors,
],
)
def test_unsupervised_inputs(global_dtype, KNeighborsMixinSubclass):
# Test unsupervised inputs for neighbors estimators
X = rng.random_sample((10, 3)).astype(global_dtype, copy=False)
y = rng.randint(3, size=10)
nbrs_fid = neighbors.NearestNeighbors(n_neighbors=1)
nbrs_fid.fit(X)
dist1, ind1 = nbrs_fid.kneighbors(X)
nbrs = KNeighborsMixinSubclass(n_neighbors=1)
for data in (nbrs_fid, neighbors.BallTree(X), neighbors.KDTree(X)):
nbrs.fit(data, y)
dist2, ind2 = nbrs.kneighbors(X)
assert_allclose(dist1, dist2)
assert_array_equal(ind1, ind2)
def test_not_fitted_error_gets_raised():
X = [[1]]
neighbors_ = neighbors.NearestNeighbors()
with pytest.raises(NotFittedError):
neighbors_.kneighbors_graph(X)
with pytest.raises(NotFittedError):
neighbors_.radius_neighbors_graph(X)
@pytest.mark.filterwarnings("ignore:EfficiencyWarning")
def check_precomputed(make_train_test, estimators):
"""Tests unsupervised NearestNeighbors with a distance matrix."""
# Note: smaller samples may result in spurious test success
rng = np.random.RandomState(42)
X = rng.random_sample((10, 4))
Y = rng.random_sample((3, 4))
DXX, DYX = make_train_test(X, Y)
for method in [
"kneighbors",
]:
# TODO: also test radius_neighbors, but requires different assertion
# As a feature matrix (n_samples by n_features)
nbrs_X = neighbors.NearestNeighbors(n_neighbors=3)
nbrs_X.fit(X)
dist_X, ind_X = getattr(nbrs_X, method)(Y)
# As a dense distance matrix (n_samples by n_samples)
nbrs_D = neighbors.NearestNeighbors(
n_neighbors=3, algorithm="brute", metric="precomputed"
)
nbrs_D.fit(DXX)
dist_D, ind_D = getattr(nbrs_D, method)(DYX)
assert_allclose(dist_X, dist_D)
assert_array_equal(ind_X, ind_D)
# Check auto works too
nbrs_D = neighbors.NearestNeighbors(
n_neighbors=3, algorithm="auto", metric="precomputed"
)
nbrs_D.fit(DXX)
dist_D, ind_D = getattr(nbrs_D, method)(DYX)
assert_allclose(dist_X, dist_D)
assert_array_equal(ind_X, ind_D)
# Check X=None in prediction
dist_X, ind_X = getattr(nbrs_X, method)(None)
dist_D, ind_D = getattr(nbrs_D, method)(None)
assert_allclose(dist_X, dist_D)
assert_array_equal(ind_X, ind_D)
# Must raise a ValueError if the matrix is not of correct shape
with pytest.raises(ValueError):
getattr(nbrs_D, method)(X)
target = np.arange(X.shape[0])
for Est in estimators:
est = Est(metric="euclidean")
est.radius = est.n_neighbors = 1
pred_X = est.fit(X, target).predict(Y)
est.metric = "precomputed"
pred_D = est.fit(DXX, target).predict(DYX)
assert_allclose(pred_X, pred_D)
def test_precomputed_dense():
def make_train_test(X_train, X_test):
return (
metrics.pairwise_distances(X_train),
metrics.pairwise_distances(X_test, X_train),
)
estimators = [
neighbors.KNeighborsClassifier,
neighbors.KNeighborsRegressor,
neighbors.RadiusNeighborsClassifier,
neighbors.RadiusNeighborsRegressor,
]
check_precomputed(make_train_test, estimators)
@pytest.mark.parametrize("fmt", ["csr", "lil"])
def test_precomputed_sparse_knn(fmt):
def make_train_test(X_train, X_test):
nn = neighbors.NearestNeighbors(n_neighbors=3 + 1).fit(X_train)
return (
nn.kneighbors_graph(X_train, mode="distance").asformat(fmt),
nn.kneighbors_graph(X_test, mode="distance").asformat(fmt),
)
# We do not test RadiusNeighborsClassifier and RadiusNeighborsRegressor
# since the precomputed neighbors graph is built with k neighbors only.
estimators = [
neighbors.KNeighborsClassifier,
neighbors.KNeighborsRegressor,
]
check_precomputed(make_train_test, estimators)
@pytest.mark.parametrize("fmt", ["csr", "lil"])
def test_precomputed_sparse_radius(fmt):
def make_train_test(X_train, X_test):
nn = neighbors.NearestNeighbors(radius=1).fit(X_train)
return (
nn.radius_neighbors_graph(X_train, mode="distance").asformat(fmt),
nn.radius_neighbors_graph(X_test, mode="distance").asformat(fmt),
)
# We do not test KNeighborsClassifier and KNeighborsRegressor
# since the precomputed neighbors graph is built with a radius.
estimators = [
neighbors.RadiusNeighborsClassifier,
neighbors.RadiusNeighborsRegressor,
]
check_precomputed(make_train_test, estimators)
def test_is_sorted_by_data():
# Test that _is_sorted_by_data works as expected. In CSR sparse matrix,
# entries in each row can be sorted by indices, by data, or unsorted.
# _is_sorted_by_data should return True when entries are sorted by data,
# and False in all other cases.
# Test with sorted 1D array
X = csr_matrix(np.arange(10))
assert _is_sorted_by_data(X)
# Test with unsorted 1D array
X[0, 2] = 5
assert not _is_sorted_by_data(X)
# Test when the data is sorted in each sample, but not necessarily
# between samples
X = csr_matrix([[0, 1, 2], [3, 0, 0], [3, 4, 0], [1, 0, 2]])
assert _is_sorted_by_data(X)
# Test with duplicates entries in X.indptr
data, indices, indptr = [0, 4, 2, 2], [0, 1, 1, 1], [0, 2, 2, 4]
X = csr_matrix((data, indices, indptr), shape=(3, 3))
assert _is_sorted_by_data(X)
@pytest.mark.filterwarnings("ignore:EfficiencyWarning")
@pytest.mark.parametrize("function", [sort_graph_by_row_values, _check_precomputed])
def test_sort_graph_by_row_values(function):
# Test that sort_graph_by_row_values returns a graph sorted by row values
X = csr_matrix(np.abs(np.random.RandomState(42).randn(10, 10)))
assert not _is_sorted_by_data(X)
Xt = function(X)
assert _is_sorted_by_data(Xt)
# test with a different number of nonzero entries for each sample
mask = np.random.RandomState(42).randint(2, size=(10, 10))
X = X.toarray()
X[mask == 1] = 0
X = csr_matrix(X)
assert not _is_sorted_by_data(X)
Xt = function(X)
assert _is_sorted_by_data(Xt)
@pytest.mark.filterwarnings("ignore:EfficiencyWarning")
def test_sort_graph_by_row_values_copy():
# Test if the sorting is done inplace if X is CSR, so that Xt is X.
X_ = csr_matrix(np.abs(np.random.RandomState(42).randn(10, 10)))
assert not _is_sorted_by_data(X_)
# sort_graph_by_row_values is done inplace if copy=False
X = X_.copy()
assert sort_graph_by_row_values(X).data is X.data
X = X_.copy()
assert sort_graph_by_row_values(X, copy=False).data is X.data
X = X_.copy()
assert sort_graph_by_row_values(X, copy=True).data is not X.data
# _check_precomputed is never done inplace
X = X_.copy()
assert _check_precomputed(X).data is not X.data
# do not raise if X is not CSR and copy=True
sort_graph_by_row_values(X.tocsc(), copy=True)
# raise if X is not CSR and copy=False
with pytest.raises(ValueError, match="Use copy=True to allow the conversion"):
sort_graph_by_row_values(X.tocsc(), copy=False)
# raise if X is not even sparse
with pytest.raises(TypeError, match="Input graph must be a sparse matrix"):
sort_graph_by_row_values(X.toarray())
def test_sort_graph_by_row_values_warning():
# Test that the parameter warn_when_not_sorted works as expected.
X = csr_matrix(np.abs(np.random.RandomState(42).randn(10, 10)))
assert not _is_sorted_by_data(X)
# warning
with pytest.warns(EfficiencyWarning, match="was not sorted by row values"):
sort_graph_by_row_values(X, copy=True)
with pytest.warns(EfficiencyWarning, match="was not sorted by row values"):
sort_graph_by_row_values(X, copy=True, warn_when_not_sorted=True)
with pytest.warns(EfficiencyWarning, match="was not sorted by row values"):
_check_precomputed(X)
# no warning
with warnings.catch_warnings():
warnings.simplefilter("error")
sort_graph_by_row_values(X, copy=True, warn_when_not_sorted=False)
@pytest.mark.parametrize("format", [dok_matrix, bsr_matrix, dia_matrix])
def test_sort_graph_by_row_values_bad_sparse_format(format):
# Test that sort_graph_by_row_values and _check_precomputed error on bad formats
X = format(np.abs(np.random.RandomState(42).randn(10, 10)))
with pytest.raises(TypeError, match="format is not supported"):
sort_graph_by_row_values(X)
with pytest.raises(TypeError, match="format is not supported"):
_check_precomputed(X)
@pytest.mark.filterwarnings("ignore:EfficiencyWarning")
def test_precomputed_sparse_invalid():
dist = np.array([[0.0, 2.0, 1.0], [2.0, 0.0, 3.0], [1.0, 3.0, 0.0]])
dist_csr = csr_matrix(dist)
neigh = neighbors.NearestNeighbors(n_neighbors=1, metric="precomputed")
neigh.fit(dist_csr)
neigh.kneighbors(None, n_neighbors=1)
neigh.kneighbors(np.array([[0.0, 0.0, 0.0]]), n_neighbors=2)
# Ensures enough number of nearest neighbors
dist = np.array([[0.0, 2.0, 0.0], [2.0, 0.0, 3.0], [0.0, 3.0, 0.0]])
dist_csr = csr_matrix(dist)
neigh.fit(dist_csr)
msg = "2 neighbors per samples are required, but some samples have only 1"
with pytest.raises(ValueError, match=msg):
neigh.kneighbors(None, n_neighbors=1)
# Checks error with inconsistent distance matrix
dist = np.array([[5.0, 2.0, 1.0], [-2.0, 0.0, 3.0], [1.0, 3.0, 0.0]])
dist_csr = csr_matrix(dist)
msg = "Negative values in data passed to precomputed distance matrix."
with pytest.raises(ValueError, match=msg):
neigh.kneighbors(dist_csr, n_neighbors=1)
def test_precomputed_cross_validation():
# Ensure array is split correctly
rng = np.random.RandomState(0)
X = rng.rand(20, 2)
D = pairwise_distances(X, metric="euclidean")
y = rng.randint(3, size=20)
for Est in (
neighbors.KNeighborsClassifier,
neighbors.RadiusNeighborsClassifier,
neighbors.KNeighborsRegressor,
neighbors.RadiusNeighborsRegressor,
):
metric_score = cross_val_score(Est(), X, y)
precomp_score = cross_val_score(Est(metric="precomputed"), D, y)
assert_array_equal(metric_score, precomp_score)
def test_unsupervised_radius_neighbors(
global_dtype, n_samples=20, n_features=5, n_query_pts=2, radius=0.5, random_state=0
):
# Test unsupervised radius-based query
rng = np.random.RandomState(random_state)
X = rng.rand(n_samples, n_features).astype(global_dtype, copy=False)
test = rng.rand(n_query_pts, n_features).astype(global_dtype, copy=False)
for p in P:
results = []
for algorithm in ALGORITHMS:
neigh = neighbors.NearestNeighbors(radius=radius, algorithm=algorithm, p=p)
neigh.fit(X)
ind1 = neigh.radius_neighbors(test, return_distance=False)
# sort the results: this is not done automatically for
# radius searches
dist, ind = neigh.radius_neighbors(test, return_distance=True)
for d, i, i1 in zip(dist, ind, ind1):
j = d.argsort()
d[:] = d[j]
i[:] = i[j]
i1[:] = i1[j]
results.append((dist, ind))
assert_allclose(np.concatenate(list(ind)), np.concatenate(list(ind1)))
for i in range(len(results) - 1):
assert_allclose(
np.concatenate(list(results[i][0])),
np.concatenate(list(results[i + 1][0])),
),
assert_allclose(
np.concatenate(list(results[i][1])),
np.concatenate(list(results[i + 1][1])),
)
@pytest.mark.parametrize("algorithm", ALGORITHMS)
@pytest.mark.parametrize("weights", WEIGHTS)
def test_kneighbors_classifier(
global_dtype,
algorithm,
weights,
n_samples=40,
n_features=5,
n_test_pts=10,
n_neighbors=5,
random_state=0,
):
# Test k-neighbors classification
rng = np.random.RandomState(random_state)
X = 2 * rng.rand(n_samples, n_features).astype(global_dtype, copy=False) - 1
y = ((X**2).sum(axis=1) < 0.5).astype(int)
y_str = y.astype(str)
knn = neighbors.KNeighborsClassifier(
n_neighbors=n_neighbors, weights=weights, algorithm=algorithm
)
knn.fit(X, y)
epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1)
y_pred = knn.predict(X[:n_test_pts] + epsilon)
assert_array_equal(y_pred, y[:n_test_pts])
# Test prediction with y_str
knn.fit(X, y_str)
y_pred = knn.predict(X[:n_test_pts] + epsilon)
assert_array_equal(y_pred, y_str[:n_test_pts])
def test_kneighbors_classifier_float_labels(
global_dtype,
n_samples=40,
n_features=5,
n_test_pts=10,
n_neighbors=5,
random_state=0,
):
# Test k-neighbors classification
rng = np.random.RandomState(random_state)
X = 2 * rng.rand(n_samples, n_features).astype(global_dtype, copy=False) - 1
y = ((X**2).sum(axis=1) < 0.5).astype(int)
knn = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors)
knn.fit(X, y.astype(float))
epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1)
y_pred = knn.predict(X[:n_test_pts] + epsilon)
assert_array_equal(y_pred, y[:n_test_pts])
def test_kneighbors_classifier_predict_proba(global_dtype):
# Test KNeighborsClassifier.predict_proba() method
X = np.array(
[[0, 2, 0], [0, 2, 1], [2, 0, 0], [2, 2, 0], [0, 0, 2], [0, 0, 1]]
).astype(global_dtype, copy=False)
y = np.array([4, 4, 5, 5, 1, 1])
cls = neighbors.KNeighborsClassifier(n_neighbors=3, p=1) # cityblock dist
cls.fit(X, y)
y_prob = cls.predict_proba(X)
real_prob = np.array(
[
[0, 2.0 / 3, 1.0 / 3],
[1.0 / 3, 2.0 / 3, 0],
[1.0 / 3, 0, 2.0 / 3],
[0, 1.0 / 3, 2.0 / 3],
[2.0 / 3, 1.0 / 3, 0],
[2.0 / 3, 1.0 / 3, 0],
]
)
assert_array_equal(real_prob, y_prob)
# Check that it also works with non integer labels
cls.fit(X, y.astype(str))
y_prob = cls.predict_proba(X)
assert_array_equal(real_prob, y_prob)
# Check that it works with weights='distance'
cls = neighbors.KNeighborsClassifier(n_neighbors=2, p=1, weights="distance")
cls.fit(X, y)
y_prob = cls.predict_proba(np.array([[0, 2, 0], [2, 2, 2]]))
real_prob = np.array([[0, 1, 0], [0, 0.4, 0.6]])
assert_allclose(real_prob, y_prob)
@pytest.mark.parametrize("algorithm", ALGORITHMS)
@pytest.mark.parametrize("weights", WEIGHTS)
def test_radius_neighbors_classifier(
global_dtype,
algorithm,
weights,
n_samples=40,
n_features=5,
n_test_pts=10,
radius=0.5,
random_state=0,
):
# Test radius-based classification
rng = np.random.RandomState(random_state)
X = 2 * rng.rand(n_samples, n_features).astype(global_dtype, copy=False) - 1
y = ((X**2).sum(axis=1) < radius).astype(int)
y_str = y.astype(str)
neigh = neighbors.RadiusNeighborsClassifier(
radius=radius, weights=weights, algorithm=algorithm
)
neigh.fit(X, y)
epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1)
y_pred = neigh.predict(X[:n_test_pts] + epsilon)
assert_array_equal(y_pred, y[:n_test_pts])
neigh.fit(X, y_str)
y_pred = neigh.predict(X[:n_test_pts] + epsilon)
assert_array_equal(y_pred, y_str[:n_test_pts])
@pytest.mark.parametrize("algorithm", ALGORITHMS)
@pytest.mark.parametrize("weights", WEIGHTS)
@pytest.mark.parametrize("outlier_label", [0, -1, None])
def test_radius_neighbors_classifier_when_no_neighbors(
global_dtype, algorithm, weights, outlier_label
):
# Test radius-based classifier when no neighbors found.
# In this case it should rise an informative exception
X = np.array([[1.0, 1.0], [2.0, 2.0]], dtype=global_dtype)
y = np.array([1, 2])
radius = 0.1
# no outliers
z1 = np.array([[1.01, 1.01], [2.01, 2.01]], dtype=global_dtype)
# one outlier
z2 = np.array([[1.01, 1.01], [1.4, 1.4]], dtype=global_dtype)
rnc = neighbors.RadiusNeighborsClassifier
clf = rnc(
radius=radius,
weights=weights,
algorithm=algorithm,
outlier_label=outlier_label,
)
clf.fit(X, y)
assert_array_equal(np.array([1, 2]), clf.predict(z1))
if outlier_label is None:
with pytest.raises(ValueError):
clf.predict(z2)
@pytest.mark.parametrize("algorithm", ALGORITHMS)
@pytest.mark.parametrize("weights", WEIGHTS)
def test_radius_neighbors_classifier_outlier_labeling(global_dtype, algorithm, weights):
# Test radius-based classifier when no neighbors found and outliers
# are labeled.
X = np.array(
[[1.0, 1.0], [2.0, 2.0], [0.99, 0.99], [0.98, 0.98], [2.01, 2.01]],
dtype=global_dtype,
)
y = np.array([1, 2, 1, 1, 2])
radius = 0.1
# no outliers
z1 = np.array([[1.01, 1.01], [2.01, 2.01]], dtype=global_dtype)
# one outlier
z2 = np.array([[1.4, 1.4], [1.01, 1.01], [2.01, 2.01]], dtype=global_dtype)
correct_labels1 = np.array([1, 2])
correct_labels2 = np.array([-1, 1, 2])
outlier_proba = np.array([0, 0])
clf = neighbors.RadiusNeighborsClassifier(
radius=radius, weights=weights, algorithm=algorithm, outlier_label=-1
)
clf.fit(X, y)
assert_array_equal(correct_labels1, clf.predict(z1))
with pytest.warns(UserWarning, match="Outlier label -1 is not in training classes"):
assert_array_equal(correct_labels2, clf.predict(z2))
with pytest.warns(UserWarning, match="Outlier label -1 is not in training classes"):
assert_allclose(outlier_proba, clf.predict_proba(z2)[0])
# test outlier_labeling of using predict_proba()
RNC = neighbors.RadiusNeighborsClassifier
X = np.array([[0], [1], [2], [3], [4], [5], [6], [7], [8], [9]], dtype=global_dtype)
y = np.array([0, 2, 2, 1, 1, 1, 3, 3, 3, 3])
# test outlier_label scalar verification
def check_array_exception():
clf = RNC(radius=1, outlier_label=[[5]])
clf.fit(X, y)
with pytest.raises(TypeError):
check_array_exception()
# test invalid outlier_label dtype
def check_dtype_exception():
clf = RNC(radius=1, outlier_label="a")
clf.fit(X, y)
with pytest.raises(TypeError):
check_dtype_exception()
# test most frequent
clf = RNC(radius=1, outlier_label="most_frequent")
clf.fit(X, y)
proba = clf.predict_proba([[1], [15]])
assert_array_equal(proba[1, :], [0, 0, 0, 1])
# test manual label in y
clf = RNC(radius=1, outlier_label=1)
clf.fit(X, y)
proba = clf.predict_proba([[1], [15]])
assert_array_equal(proba[1, :], [0, 1, 0, 0])
pred = clf.predict([[1], [15]])
assert_array_equal(pred, [2, 1])
# test manual label out of y warning
def check_warning():
clf = RNC(radius=1, outlier_label=4)
clf.fit(X, y)
clf.predict_proba([[1], [15]])
with pytest.warns(UserWarning):
check_warning()
# test multi output same outlier label
y_multi = [
[0, 1],
[2, 1],
[2, 2],
[1, 2],
[1, 2],
[1, 3],
[3, 3],
[3, 3],
[3, 0],
[3, 0],
]
clf = RNC(radius=1, outlier_label=1)
clf.fit(X, y_multi)
proba = clf.predict_proba([[7], [15]])
assert_array_equal(proba[1][1, :], [0, 1, 0, 0])
pred = clf.predict([[7], [15]])
assert_array_equal(pred[1, :], [1, 1])
# test multi output different outlier label
y_multi = [
[0, 0],
[2, 2],
[2, 2],
[1, 1],
[1, 1],
[1, 1],
[3, 3],
[3, 3],
[3, 3],
[3, 3],
]
clf = RNC(radius=1, outlier_label=[0, 1])
clf.fit(X, y_multi)
proba = clf.predict_proba([[7], [15]])
assert_array_equal(proba[0][1, :], [1, 0, 0, 0])
assert_array_equal(proba[1][1, :], [0, 1, 0, 0])
pred = clf.predict([[7], [15]])
assert_array_equal(pred[1, :], [0, 1])
# test inconsistent outlier label list length
def check_exception():
clf = RNC(radius=1, outlier_label=[0, 1, 2])
clf.fit(X, y_multi)
with pytest.raises(ValueError):
check_exception()
def test_radius_neighbors_classifier_zero_distance():
# Test radius-based classifier, when distance to a sample is zero.
X = np.array([[1.0, 1.0], [2.0, 2.0]])
y = np.array([1, 2])
radius = 0.1
z1 = np.array([[1.01, 1.01], [2.0, 2.0]])
correct_labels1 = np.array([1, 2])
weight_func = _weight_func
for algorithm in ALGORITHMS:
for weights in ["uniform", "distance", weight_func]:
clf = neighbors.RadiusNeighborsClassifier(
radius=radius, weights=weights, algorithm=algorithm
)
clf.fit(X, y)
with np.errstate(invalid="ignore"):
# Ignore the warning raised in _weight_func when making
# predictions with null distances resulting in np.inf values.
assert_array_equal(correct_labels1, clf.predict(z1))
def test_neighbors_regressors_zero_distance():
# Test radius-based regressor, when distance to a sample is zero.
X = np.array([[1.0, 1.0], [1.0, 1.0], [2.0, 2.0], [2.5, 2.5]])
y = np.array([1.0, 1.5, 2.0, 0.0])
radius = 0.2
z = np.array([[1.1, 1.1], [2.0, 2.0]])
rnn_correct_labels = np.array([1.25, 2.0])
knn_correct_unif = np.array([1.25, 1.0])
knn_correct_dist = np.array([1.25, 2.0])
for algorithm in ALGORITHMS:
# we don't test for weights=_weight_func since user will be expected
# to handle zero distances themselves in the function.
for weights in ["uniform", "distance"]:
rnn = neighbors.RadiusNeighborsRegressor(
radius=radius, weights=weights, algorithm=algorithm
)
rnn.fit(X, y)
assert_allclose(rnn_correct_labels, rnn.predict(z))
for weights, corr_labels in zip(
["uniform", "distance"], [knn_correct_unif, knn_correct_dist]
):
knn = neighbors.KNeighborsRegressor(
n_neighbors=2, weights=weights, algorithm=algorithm
)
knn.fit(X, y)
assert_allclose(corr_labels, knn.predict(z))
def test_radius_neighbors_boundary_handling():
"""Test whether points lying on boundary are handled consistently
Also ensures that even with only one query point, an object array
is returned rather than a 2d array.
"""
X = np.array([[1.5], [3.0], [3.01]])
radius = 3.0
for algorithm in ALGORITHMS:
nbrs = neighbors.NearestNeighbors(radius=radius, algorithm=algorithm).fit(X)
results = nbrs.radius_neighbors([[0.0]], return_distance=False)
assert results.shape == (1,)
assert results.dtype == object
assert_array_equal(results[0], [0, 1])
def test_radius_neighbors_returns_array_of_objects():
# check that we can pass precomputed distances to
# NearestNeighbors.radius_neighbors()
# non-regression test for
# https://github.com/scikit-learn/scikit-learn/issues/16036
X = csr_matrix(np.ones((4, 4)))
X.setdiag([0, 0, 0, 0])
nbrs = neighbors.NearestNeighbors(
radius=0.5, algorithm="auto", leaf_size=30, metric="precomputed"
).fit(X)
neigh_dist, neigh_ind = nbrs.radius_neighbors(X, return_distance=True)
expected_dist = np.empty(X.shape[0], dtype=object)
expected_dist[:] = [np.array([0]), np.array([0]), np.array([0]), np.array([0])]
expected_ind = np.empty(X.shape[0], dtype=object)
expected_ind[:] = [np.array([0]), np.array([1]), np.array([2]), np.array([3])]
assert_array_equal(neigh_dist, expected_dist)
assert_array_equal(neigh_ind, expected_ind)
@pytest.mark.parametrize("algorithm", ["ball_tree", "kd_tree", "brute"])
def test_query_equidistant_kth_nn(algorithm):
# For several candidates for the k-th nearest neighbor position,
# the first candidate should be chosen
query_point = np.array([[0, 0]])
equidistant_points = np.array([[1, 0], [0, 1], [-1, 0], [0, -1]])
# The 3rd and 4th points should not replace the 2nd point
# for the 2th nearest neighbor position
k = 2
knn_indices = np.array([[0, 1]])
nn = neighbors.NearestNeighbors(algorithm=algorithm).fit(equidistant_points)
indices = np.sort(nn.kneighbors(query_point, n_neighbors=k, return_distance=False))
assert_array_equal(indices, knn_indices)
@pytest.mark.parametrize(
["algorithm", "metric"],
[
("ball_tree", "euclidean"),
("kd_tree", "euclidean"),
("brute", "euclidean"),
("brute", "precomputed"),
],
)
def test_radius_neighbors_sort_results(algorithm, metric):
# Test radius_neighbors[_graph] output when sort_result is True
n_samples = 10
rng = np.random.RandomState(42)
X = rng.random_sample((n_samples, 4))
if metric == "precomputed":
X = neighbors.radius_neighbors_graph(X, radius=np.inf, mode="distance")
model = neighbors.NearestNeighbors(algorithm=algorithm, metric=metric)
model.fit(X)
# self.radius_neighbors
distances, indices = model.radius_neighbors(X=X, radius=np.inf, sort_results=True)
for ii in range(n_samples):
assert_array_equal(distances[ii], np.sort(distances[ii]))
# sort_results=True and return_distance=False
if metric != "precomputed": # no need to raise with precomputed graph
with pytest.raises(ValueError, match="return_distance must be True"):
model.radius_neighbors(
X=X, radius=np.inf, sort_results=True, return_distance=False
)
# self.radius_neighbors_graph
graph = model.radius_neighbors_graph(
X=X, radius=np.inf, mode="distance", sort_results=True
)
assert _is_sorted_by_data(graph)
def test_RadiusNeighborsClassifier_multioutput():
# Test k-NN classifier on multioutput data
rng = check_random_state(0)
n_features = 2
n_samples = 40
n_output = 3
X = rng.rand(n_samples, n_features)
y = rng.randint(0, 3, (n_samples, n_output))
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
weights = [None, "uniform", "distance", _weight_func]
for algorithm, weights in product(ALGORITHMS, weights):
# Stack single output prediction
y_pred_so = []
for o in range(n_output):
rnn = neighbors.RadiusNeighborsClassifier(
weights=weights, algorithm=algorithm
)
rnn.fit(X_train, y_train[:, o])
y_pred_so.append(rnn.predict(X_test))
y_pred_so = np.vstack(y_pred_so).T
assert y_pred_so.shape == y_test.shape
# Multioutput prediction
rnn_mo = neighbors.RadiusNeighborsClassifier(
weights=weights, algorithm=algorithm
)
rnn_mo.fit(X_train, y_train)
y_pred_mo = rnn_mo.predict(X_test)
assert y_pred_mo.shape == y_test.shape
assert_array_equal(y_pred_mo, y_pred_so)
def test_kneighbors_classifier_sparse(
n_samples=40, n_features=5, n_test_pts=10, n_neighbors=5, random_state=0
):
# Test k-NN classifier on sparse matrices
# Like the above, but with various types of sparse matrices
rng = np.random.RandomState(random_state)
X = 2 * rng.rand(n_samples, n_features) - 1
X *= X > 0.2
y = ((X**2).sum(axis=1) < 0.5).astype(int)
for sparsemat in SPARSE_TYPES:
knn = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors, algorithm="auto")
knn.fit(sparsemat(X), y)
epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1)
for sparsev in SPARSE_TYPES + (np.asarray,):
X_eps = sparsev(X[:n_test_pts] + epsilon)
y_pred = knn.predict(X_eps)
assert_array_equal(y_pred, y[:n_test_pts])
def test_KNeighborsClassifier_multioutput():
# Test k-NN classifier on multioutput data
rng = check_random_state(0)
n_features = 5
n_samples = 50
n_output = 3
X = rng.rand(n_samples, n_features)
y = rng.randint(0, 3, (n_samples, n_output))
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
weights = [None, "uniform", "distance", _weight_func]
for algorithm, weights in product(ALGORITHMS, weights):
# Stack single output prediction
y_pred_so = []
y_pred_proba_so = []
for o in range(n_output):
knn = neighbors.KNeighborsClassifier(weights=weights, algorithm=algorithm)
knn.fit(X_train, y_train[:, o])
y_pred_so.append(knn.predict(X_test))
y_pred_proba_so.append(knn.predict_proba(X_test))
y_pred_so = np.vstack(y_pred_so).T
assert y_pred_so.shape == y_test.shape
assert len(y_pred_proba_so) == n_output
# Multioutput prediction
knn_mo = neighbors.KNeighborsClassifier(weights=weights, algorithm=algorithm)
knn_mo.fit(X_train, y_train)
y_pred_mo = knn_mo.predict(X_test)
assert y_pred_mo.shape == y_test.shape
assert_array_equal(y_pred_mo, y_pred_so)
# Check proba
y_pred_proba_mo = knn_mo.predict_proba(X_test)
assert len(y_pred_proba_mo) == n_output
for proba_mo, proba_so in zip(y_pred_proba_mo, y_pred_proba_so):
assert_array_equal(proba_mo, proba_so)
def test_kneighbors_regressor(
n_samples=40, n_features=5, n_test_pts=10, n_neighbors=3, random_state=0
):
# Test k-neighbors regression
rng = np.random.RandomState(random_state)
X = 2 * rng.rand(n_samples, n_features) - 1
y = np.sqrt((X**2).sum(1))
y /= y.max()
y_target = y[:n_test_pts]
weight_func = _weight_func
for algorithm in ALGORITHMS:
for weights in ["uniform", "distance", weight_func]:
knn = neighbors.KNeighborsRegressor(
n_neighbors=n_neighbors, weights=weights, algorithm=algorithm
)
knn.fit(X, y)
epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1)
y_pred = knn.predict(X[:n_test_pts] + epsilon)
assert np.all(abs(y_pred - y_target) < 0.3)
def test_KNeighborsRegressor_multioutput_uniform_weight():
# Test k-neighbors in multi-output regression with uniform weight
rng = check_random_state(0)
n_features = 5
n_samples = 40
n_output = 4
X = rng.rand(n_samples, n_features)
y = rng.rand(n_samples, n_output)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
for algorithm, weights in product(ALGORITHMS, [None, "uniform"]):
knn = neighbors.KNeighborsRegressor(weights=weights, algorithm=algorithm)
knn.fit(X_train, y_train)
neigh_idx = knn.kneighbors(X_test, return_distance=False)
y_pred_idx = np.array([np.mean(y_train[idx], axis=0) for idx in neigh_idx])
y_pred = knn.predict(X_test)
assert y_pred.shape == y_test.shape
assert y_pred_idx.shape == y_test.shape
assert_allclose(y_pred, y_pred_idx)
def test_kneighbors_regressor_multioutput(
n_samples=40, n_features=5, n_test_pts=10, n_neighbors=3, random_state=0
):
# Test k-neighbors in multi-output regression
rng = np.random.RandomState(random_state)
X = 2 * rng.rand(n_samples, n_features) - 1
y = np.sqrt((X**2).sum(1))
y /= y.max()
y = np.vstack([y, y]).T
y_target = y[:n_test_pts]
weights = ["uniform", "distance", _weight_func]
for algorithm, weights in product(ALGORITHMS, weights):
knn = neighbors.KNeighborsRegressor(
n_neighbors=n_neighbors, weights=weights, algorithm=algorithm
)
knn.fit(X, y)
epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1)
y_pred = knn.predict(X[:n_test_pts] + epsilon)
assert y_pred.shape == y_target.shape
assert np.all(np.abs(y_pred - y_target) < 0.3)
def test_radius_neighbors_regressor(
n_samples=40, n_features=3, n_test_pts=10, radius=0.5, random_state=0
):
# Test radius-based neighbors regression
rng = np.random.RandomState(random_state)
X = 2 * rng.rand(n_samples, n_features) - 1
y = np.sqrt((X**2).sum(1))
y /= y.max()
y_target = y[:n_test_pts]
weight_func = _weight_func
for algorithm in ALGORITHMS:
for weights in ["uniform", "distance", weight_func]:
neigh = neighbors.RadiusNeighborsRegressor(
radius=radius, weights=weights, algorithm=algorithm
)
neigh.fit(X, y)
epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1)
y_pred = neigh.predict(X[:n_test_pts] + epsilon)
assert np.all(abs(y_pred - y_target) < radius / 2)
# test that nan is returned when no nearby observations
for weights in ["uniform", "distance"]:
neigh = neighbors.RadiusNeighborsRegressor(
radius=radius, weights=weights, algorithm="auto"
)
neigh.fit(X, y)
X_test_nan = np.full((1, n_features), -1.0)
empty_warning_msg = (
"One or more samples have no neighbors "
"within specified radius; predicting NaN."
)
with pytest.warns(UserWarning, match=re.escape(empty_warning_msg)):
pred = neigh.predict(X_test_nan)
assert np.all(np.isnan(pred))
def test_RadiusNeighborsRegressor_multioutput_with_uniform_weight():
# Test radius neighbors in multi-output regression (uniform weight)
rng = check_random_state(0)
n_features = 5
n_samples = 40
n_output = 4
X = rng.rand(n_samples, n_features)
y = rng.rand(n_samples, n_output)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
for algorithm, weights in product(ALGORITHMS, [None, "uniform"]):
rnn = neighbors.RadiusNeighborsRegressor(weights=weights, algorithm=algorithm)
rnn.fit(X_train, y_train)
neigh_idx = rnn.radius_neighbors(X_test, return_distance=False)
y_pred_idx = np.array([np.mean(y_train[idx], axis=0) for idx in neigh_idx])
y_pred_idx = np.array(y_pred_idx)
y_pred = rnn.predict(X_test)
assert y_pred_idx.shape == y_test.shape
assert y_pred.shape == y_test.shape
assert_allclose(y_pred, y_pred_idx)
def test_RadiusNeighborsRegressor_multioutput(
n_samples=40, n_features=5, n_test_pts=10, random_state=0
):
# Test k-neighbors in multi-output regression with various weight
rng = np.random.RandomState(random_state)
X = 2 * rng.rand(n_samples, n_features) - 1
y = np.sqrt((X**2).sum(1))
y /= y.max()
y = np.vstack([y, y]).T
y_target = y[:n_test_pts]
weights = ["uniform", "distance", _weight_func]
for algorithm, weights in product(ALGORITHMS, weights):
rnn = neighbors.RadiusNeighborsRegressor(weights=weights, algorithm=algorithm)
rnn.fit(X, y)
epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1)
y_pred = rnn.predict(X[:n_test_pts] + epsilon)
assert y_pred.shape == y_target.shape
assert np.all(np.abs(y_pred - y_target) < 0.3)
@pytest.mark.filterwarnings("ignore:EfficiencyWarning")
def test_kneighbors_regressor_sparse(
n_samples=40, n_features=5, n_test_pts=10, n_neighbors=5, random_state=0
):
# Test radius-based regression on sparse matrices
# Like the above, but with various types of sparse matrices
rng = np.random.RandomState(random_state)
X = 2 * rng.rand(n_samples, n_features) - 1
y = ((X**2).sum(axis=1) < 0.25).astype(int)
for sparsemat in SPARSE_TYPES:
knn = neighbors.KNeighborsRegressor(n_neighbors=n_neighbors, algorithm="auto")
knn.fit(sparsemat(X), y)
knn_pre = neighbors.KNeighborsRegressor(
n_neighbors=n_neighbors, metric="precomputed"
)
knn_pre.fit(pairwise_distances(X, metric="euclidean"), y)
for sparsev in SPARSE_OR_DENSE:
X2 = sparsev(X)
assert np.mean(knn.predict(X2).round() == y) > 0.95
X2_pre = sparsev(pairwise_distances(X, metric="euclidean"))
if sparsev in {dok_matrix, bsr_matrix}:
msg = "not supported due to its handling of explicit zeros"
with pytest.raises(TypeError, match=msg):
knn_pre.predict(X2_pre)
else:
assert np.mean(knn_pre.predict(X2_pre).round() == y) > 0.95
def test_neighbors_iris():
# Sanity checks on the iris dataset
# Puts three points of each label in the plane and performs a
# nearest neighbor query on points near the decision boundary.
for algorithm in ALGORITHMS:
clf = neighbors.KNeighborsClassifier(n_neighbors=1, algorithm=algorithm)
clf.fit(iris.data, iris.target)
assert_array_equal(clf.predict(iris.data), iris.target)
clf.set_params(n_neighbors=9, algorithm=algorithm)
clf.fit(iris.data, iris.target)
assert np.mean(clf.predict(iris.data) == iris.target) > 0.95
rgs = neighbors.KNeighborsRegressor(n_neighbors=5, algorithm=algorithm)
rgs.fit(iris.data, iris.target)
assert np.mean(rgs.predict(iris.data).round() == iris.target) > 0.95
def test_neighbors_digits():
# Sanity check on the digits dataset
# the 'brute' algorithm has been observed to fail if the input
# dtype is uint8 due to overflow in distance calculations.
X = digits.data.astype("uint8")
Y = digits.target
(n_samples, n_features) = X.shape
train_test_boundary = int(n_samples * 0.8)
train = np.arange(0, train_test_boundary)
test = np.arange(train_test_boundary, n_samples)
(X_train, Y_train, X_test, Y_test) = X[train], Y[train], X[test], Y[test]
clf = neighbors.KNeighborsClassifier(n_neighbors=1, algorithm="brute")
score_uint8 = clf.fit(X_train, Y_train).score(X_test, Y_test)
score_float = clf.fit(X_train.astype(float, copy=False), Y_train).score(
X_test.astype(float, copy=False), Y_test
)
assert score_uint8 == score_float
def test_kneighbors_graph():
# Test kneighbors_graph to build the k-Nearest Neighbor graph.
X = np.array([[0, 1], [1.01, 1.0], [2, 0]])
# n_neighbors = 1
A = neighbors.kneighbors_graph(X, 1, mode="connectivity", include_self=True)
assert_array_equal(A.toarray(), np.eye(A.shape[0]))
A = neighbors.kneighbors_graph(X, 1, mode="distance")
assert_allclose(
A.toarray(), [[0.00, 1.01, 0.0], [1.01, 0.0, 0.0], [0.00, 1.40716026, 0.0]]
)
# n_neighbors = 2
A = neighbors.kneighbors_graph(X, 2, mode="connectivity", include_self=True)
assert_array_equal(A.toarray(), [[1.0, 1.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]])
A = neighbors.kneighbors_graph(X, 2, mode="distance")
assert_allclose(
A.toarray(),
[
[0.0, 1.01, 2.23606798],
[1.01, 0.0, 1.40716026],
[2.23606798, 1.40716026, 0.0],
],
)
# n_neighbors = 3
A = neighbors.kneighbors_graph(X, 3, mode="connectivity", include_self=True)
assert_allclose(A.toarray(), [[1, 1, 1], [1, 1, 1], [1, 1, 1]])
@pytest.mark.parametrize("n_neighbors", [1, 2, 3])
@pytest.mark.parametrize("mode", ["connectivity", "distance"])
def test_kneighbors_graph_sparse(n_neighbors, mode, seed=36):
# Test kneighbors_graph to build the k-Nearest Neighbor graph
# for sparse input.
rng = np.random.RandomState(seed)
X = rng.randn(10, 10)
Xcsr = csr_matrix(X)
assert_allclose(
neighbors.kneighbors_graph(X, n_neighbors, mode=mode).toarray(),
neighbors.kneighbors_graph(Xcsr, n_neighbors, mode=mode).toarray(),
)
def test_radius_neighbors_graph():
# Test radius_neighbors_graph to build the Nearest Neighbor graph.
X = np.array([[0, 1], [1.01, 1.0], [2, 0]])
A = neighbors.radius_neighbors_graph(X, 1.5, mode="connectivity", include_self=True)
assert_array_equal(A.toarray(), [[1.0, 1.0, 0.0], [1.0, 1.0, 1.0], [0.0, 1.0, 1.0]])
A = neighbors.radius_neighbors_graph(X, 1.5, mode="distance")
assert_allclose(
A.toarray(), [[0.0, 1.01, 0.0], [1.01, 0.0, 1.40716026], [0.0, 1.40716026, 0.0]]
)
@pytest.mark.parametrize("n_neighbors", [1, 2, 3])
@pytest.mark.parametrize("mode", ["connectivity", "distance"])
def test_radius_neighbors_graph_sparse(n_neighbors, mode, seed=36):
# Test radius_neighbors_graph to build the Nearest Neighbor graph
# for sparse input.
rng = np.random.RandomState(seed)
X = rng.randn(10, 10)
Xcsr = csr_matrix(X)
assert_allclose(
neighbors.radius_neighbors_graph(X, n_neighbors, mode=mode).toarray(),
neighbors.radius_neighbors_graph(Xcsr, n_neighbors, mode=mode).toarray(),
)
@pytest.mark.parametrize(
"Estimator",
[
neighbors.KNeighborsClassifier,
neighbors.RadiusNeighborsClassifier,
neighbors.KNeighborsRegressor,
neighbors.RadiusNeighborsRegressor,
],
)
def test_neighbors_validate_parameters(Estimator):
"""Additional parameter validation for *Neighbors* estimators not covered by common
validation."""
X = rng.random_sample((10, 2))
Xsparse = csr_matrix(X)
X3 = rng.random_sample((10, 3))
y = np.ones(10)
nbrs = Estimator(algorithm="ball_tree", metric="haversine")
msg = "instance is not fitted yet"
with pytest.raises(ValueError, match=msg):
nbrs.predict(X)
msg = "Metric 'haversine' not valid for sparse input."
with pytest.raises(ValueError, match=msg):
ignore_warnings(nbrs.fit(Xsparse, y))
nbrs = Estimator(metric="haversine", algorithm="brute")
nbrs.fit(X3, y)
msg = "Haversine distance only valid in 2 dimensions"
with pytest.raises(ValueError, match=msg):
nbrs.predict(X3)
nbrs = Estimator()
msg = re.escape("Found array with 0 sample(s)")
with pytest.raises(ValueError, match=msg):
nbrs.fit(np.ones((0, 2)), np.ones(0))
msg = "Found array with dim 3"
with pytest.raises(ValueError, match=msg):
nbrs.fit(X[:, :, None], y)
nbrs.fit(X, y)
msg = re.escape("Found array with 0 feature(s)")
with pytest.raises(ValueError, match=msg):
nbrs.predict([[]])
@pytest.mark.parametrize(
"Estimator",
[
neighbors.KNeighborsClassifier,
neighbors.RadiusNeighborsClassifier,
neighbors.KNeighborsRegressor,
neighbors.RadiusNeighborsRegressor,
],
)
@pytest.mark.parametrize("n_features", [2, 100])
@pytest.mark.parametrize("algorithm", ["auto", "brute"])
def test_neighbors_minkowski_semimetric_algo_warn(Estimator, n_features, algorithm):
"""
Validation of all classes extending NeighborsBase with
Minkowski semi-metrics (i.e. when 0 < p < 1). That proper
Warning is raised for `algorithm="auto"` and "brute".
"""
X = rng.random_sample((10, n_features))
y = np.ones(10)
model = Estimator(p=0.1, algorithm=algorithm)
msg = (
"Mind that for 0 < p < 1, Minkowski metrics are not distance"
" metrics. Continuing the execution with `algorithm='brute'`."
)
with pytest.warns(UserWarning, match=msg):
model.fit(X, y)
assert model._fit_method == "brute"
@pytest.mark.parametrize(
"Estimator",
[
neighbors.KNeighborsClassifier,
neighbors.RadiusNeighborsClassifier,
neighbors.KNeighborsRegressor,
neighbors.RadiusNeighborsRegressor,
],
)
@pytest.mark.parametrize("n_features", [2, 100])
@pytest.mark.parametrize("algorithm", ["kd_tree", "ball_tree"])
def test_neighbors_minkowski_semimetric_algo_error(Estimator, n_features, algorithm):
"""Check that we raise a proper error if `algorithm!='brute'` and `p<1`."""
X = rng.random_sample((10, 2))
y = np.ones(10)
model = Estimator(algorithm=algorithm, p=0.1)
msg = (
f'algorithm="{algorithm}" does not support 0 < p < 1 for '
"the Minkowski metric. To resolve this problem either "
'set p >= 1 or algorithm="brute".'
)
with pytest.raises(ValueError, match=msg):
model.fit(X, y)
# TODO: remove when NearestNeighbors methods uses parameter validation mechanism
def test_nearest_neighbors_validate_params():
"""Validate parameter of NearestNeighbors."""
X = rng.random_sample((10, 2))
nbrs = neighbors.NearestNeighbors().fit(X)
msg = (
'Unsupported mode, must be one of "connectivity", or "distance" but got "blah"'
" instead"
)
with pytest.raises(ValueError, match=msg):
nbrs.kneighbors_graph(X, mode="blah")
with pytest.raises(ValueError, match=msg):
nbrs.radius_neighbors_graph(X, mode="blah")
# TODO: Remove filterwarnings in 1.3 when wminkowski is removed
@pytest.mark.filterwarnings("ignore:WMinkowskiDistance:FutureWarning:sklearn")
@pytest.mark.parametrize(
"metric",
sorted(
set(neighbors.VALID_METRICS["ball_tree"]).intersection(
neighbors.VALID_METRICS["brute"]
)
- set(["pyfunc", *BOOL_METRICS])
),
)
def test_neighbors_metrics(
global_dtype, metric, n_samples=20, n_features=3, n_query_pts=2, n_neighbors=5
):
# Test computing the neighbors for various metrics
algorithms = ["brute", "ball_tree", "kd_tree"]
X_train = rng.rand(n_samples, n_features).astype(global_dtype, copy=False)
X_test = rng.rand(n_query_pts, n_features).astype(global_dtype, copy=False)
metric_params_list = _generate_test_params_for(metric, n_features)
for metric_params in metric_params_list:
# Some metric (e.g. Weighted minkowski) are not supported by KDTree
exclude_kd_tree = metric not in neighbors.VALID_METRICS["kd_tree"] or (
"minkowski" in metric and "w" in metric_params
)
results = {}
p = metric_params.pop("p", 2)
for algorithm in algorithms:
neigh = neighbors.NearestNeighbors(
n_neighbors=n_neighbors,
algorithm=algorithm,
metric=metric,
p=p,
metric_params=metric_params,
)
if exclude_kd_tree and algorithm == "kd_tree":
with pytest.raises(ValueError):
neigh.fit(X_train)
continue
# Haversine distance only accepts 2D data
if metric == "haversine":
feature_sl = slice(None, 2)
X_train = np.ascontiguousarray(X_train[:, feature_sl])
X_test = np.ascontiguousarray(X_test[:, feature_sl])
neigh.fit(X_train)
# wminkoski is deprecated in SciPy 1.6.0 and removed in 1.8.0
if (
metric == "wminkowski"
and algorithm == "brute"
and sp_version >= parse_version("1.6.0")
):
with pytest.warns((FutureWarning, DeprecationWarning)):
# For float64 WMinkowskiDistance raises a FutureWarning,
# for float32 scipy raises a DeprecationWarning
results[algorithm] = neigh.kneighbors(X_test, return_distance=True)
else:
results[algorithm] = neigh.kneighbors(X_test, return_distance=True)
brute_dst, brute_idx = results["brute"]
ball_tree_dst, ball_tree_idx = results["ball_tree"]
assert_allclose(brute_dst, ball_tree_dst)
assert_array_equal(brute_idx, ball_tree_idx)
if not exclude_kd_tree:
kd_tree_dst, kd_tree_idx = results["kd_tree"]
assert_allclose(brute_dst, kd_tree_dst)
assert_array_equal(brute_idx, kd_tree_idx)
assert_allclose(ball_tree_dst, kd_tree_dst)
assert_array_equal(ball_tree_idx, kd_tree_idx)
# TODO: Remove filterwarnings in 1.3 when wminkowski is removed
@pytest.mark.filterwarnings("ignore:WMinkowskiDistance:FutureWarning:sklearn")
@pytest.mark.parametrize(
"metric", sorted(set(neighbors.VALID_METRICS["brute"]) - set(["precomputed"]))
)
def test_kneighbors_brute_backend(
global_dtype, metric, n_samples=2000, n_features=30, n_query_pts=100, n_neighbors=5
):
# Both backend for the 'brute' algorithm of kneighbors must give identical results.
X_train = rng.rand(n_samples, n_features).astype(global_dtype, copy=False)
X_test = rng.rand(n_query_pts, n_features).astype(global_dtype, copy=False)
# Haversine distance only accepts 2D data
if metric == "haversine":
feature_sl = slice(None, 2)
X_train = np.ascontiguousarray(X_train[:, feature_sl])
X_test = np.ascontiguousarray(X_test[:, feature_sl])
metric_params_list = _generate_test_params_for(metric, n_features)
# wminkoski is deprecated in SciPy 1.6.0 and removed in 1.8.0
warn_context_manager = nullcontext()
if metric == "wminkowski" and sp_version >= parse_version("1.6.0"):
# For float64 WMinkowskiDistance raises a FutureWarning,
# for float32 scipy raises a DeprecationWarning
warn_context_manager = pytest.warns((FutureWarning, DeprecationWarning))
for metric_params in metric_params_list:
p = metric_params.pop("p", 2)
neigh = neighbors.NearestNeighbors(
n_neighbors=n_neighbors,
algorithm="brute",
metric=metric,
p=p,
metric_params=metric_params,
)
neigh.fit(X_train)
with warn_context_manager:
with config_context(enable_cython_pairwise_dist=False):
# Use the legacy backend for brute
legacy_brute_dst, legacy_brute_idx = neigh.kneighbors(
X_test, return_distance=True
)
with config_context(enable_cython_pairwise_dist=True):
# Use the pairwise-distances reduction backend for brute
pdr_brute_dst, pdr_brute_idx = neigh.kneighbors(
X_test, return_distance=True
)
assert_allclose(legacy_brute_dst, pdr_brute_dst)
assert_array_equal(legacy_brute_idx, pdr_brute_idx)
def test_callable_metric():
def custom_metric(x1, x2):
return np.sqrt(np.sum(x1**2 + x2**2))
X = np.random.RandomState(42).rand(20, 2)
nbrs1 = neighbors.NearestNeighbors(
n_neighbors=3, algorithm="auto", metric=custom_metric
)
nbrs2 = neighbors.NearestNeighbors(
n_neighbors=3, algorithm="brute", metric=custom_metric
)
nbrs1.fit(X)
nbrs2.fit(X)
dist1, ind1 = nbrs1.kneighbors(X)
dist2, ind2 = nbrs2.kneighbors(X)
assert_allclose(dist1, dist2)
# TODO: Remove filterwarnings in 1.3 when wminkowski is removed
@pytest.mark.filterwarnings("ignore:WMinkowskiDistance:FutureWarning:sklearn")
@pytest.mark.parametrize("metric", neighbors.VALID_METRICS["brute"])
def test_valid_brute_metric_for_auto_algorithm(
global_dtype, metric, n_samples=20, n_features=12
):
X = rng.rand(n_samples, n_features).astype(global_dtype, copy=False)
Xcsr = csr_matrix(X)
metric_params_list = _generate_test_params_for(metric, n_features)
if metric == "precomputed":
X_precomputed = rng.random_sample((10, 4))
Y_precomputed = rng.random_sample((3, 4))
DXX = metrics.pairwise_distances(X_precomputed, metric="euclidean")
DYX = metrics.pairwise_distances(
Y_precomputed, X_precomputed, metric="euclidean"
)
nb_p = neighbors.NearestNeighbors(n_neighbors=3, metric="precomputed")
nb_p.fit(DXX)
nb_p.kneighbors(DYX)
else:
for metric_params in metric_params_list:
nn = neighbors.NearestNeighbors(
n_neighbors=3,
algorithm="auto",
metric=metric,
metric_params=metric_params,
)
# Haversine distance only accepts 2D data
if metric == "haversine":
feature_sl = slice(None, 2)
X = np.ascontiguousarray(X[:, feature_sl])
nn.fit(X)
nn.kneighbors(X)
if metric in VALID_METRICS_SPARSE["brute"]:
nn = neighbors.NearestNeighbors(
n_neighbors=3, algorithm="auto", metric=metric
).fit(Xcsr)
nn.kneighbors(Xcsr)
def test_metric_params_interface():
X = rng.rand(5, 5)
y = rng.randint(0, 2, 5)
est = neighbors.KNeighborsClassifier(metric_params={"p": 3})
with pytest.warns(SyntaxWarning):
est.fit(X, y)
def test_predict_sparse_ball_kd_tree():
rng = np.random.RandomState(0)
X = rng.rand(5, 5)
y = rng.randint(0, 2, 5)
nbrs1 = neighbors.KNeighborsClassifier(1, algorithm="kd_tree")
nbrs2 = neighbors.KNeighborsRegressor(1, algorithm="ball_tree")
for model in [nbrs1, nbrs2]:
model.fit(X, y)
with pytest.raises(ValueError):
model.predict(csr_matrix(X))
def test_non_euclidean_kneighbors():
rng = np.random.RandomState(0)
X = rng.rand(5, 5)
# Find a reasonable radius.
dist_array = pairwise_distances(X).flatten()
np.sort(dist_array)
radius = dist_array[15]
# Test kneighbors_graph
for metric in ["manhattan", "chebyshev"]:
nbrs_graph = neighbors.kneighbors_graph(
X, 3, metric=metric, mode="connectivity", include_self=True
).toarray()
nbrs1 = neighbors.NearestNeighbors(n_neighbors=3, metric=metric).fit(X)
assert_array_equal(nbrs_graph, nbrs1.kneighbors_graph(X).toarray())
# Test radiusneighbors_graph
for metric in ["manhattan", "chebyshev"]:
nbrs_graph = neighbors.radius_neighbors_graph(
X, radius, metric=metric, mode="connectivity", include_self=True
).toarray()
nbrs1 = neighbors.NearestNeighbors(metric=metric, radius=radius).fit(X)
assert_array_equal(nbrs_graph, nbrs1.radius_neighbors_graph(X).A)
# Raise error when wrong parameters are supplied,
X_nbrs = neighbors.NearestNeighbors(n_neighbors=3, metric="manhattan")
X_nbrs.fit(X)
with pytest.raises(ValueError):
neighbors.kneighbors_graph(X_nbrs, 3, metric="euclidean")
X_nbrs = neighbors.NearestNeighbors(radius=radius, metric="manhattan")
X_nbrs.fit(X)
with pytest.raises(ValueError):
neighbors.radius_neighbors_graph(X_nbrs, radius, metric="euclidean")
def check_object_arrays(nparray, list_check):
for ind, ele in enumerate(nparray):
assert_array_equal(ele, list_check[ind])
def test_k_and_radius_neighbors_train_is_not_query():
# Test kneighbors et.al when query is not training data
for algorithm in ALGORITHMS:
nn = neighbors.NearestNeighbors(n_neighbors=1, algorithm=algorithm)
X = [[0], [1]]
nn.fit(X)
test_data = [[2], [1]]
# Test neighbors.
dist, ind = nn.kneighbors(test_data)
assert_array_equal(dist, [[1], [0]])
assert_array_equal(ind, [[1], [1]])
dist, ind = nn.radius_neighbors([[2], [1]], radius=1.5)
check_object_arrays(dist, [[1], [1, 0]])
check_object_arrays(ind, [[1], [0, 1]])
# Test the graph variants.
assert_array_equal(nn.kneighbors_graph(test_data).A, [[0.0, 1.0], [0.0, 1.0]])
assert_array_equal(
nn.kneighbors_graph([[2], [1]], mode="distance").A,
np.array([[0.0, 1.0], [0.0, 0.0]]),
)
rng = nn.radius_neighbors_graph([[2], [1]], radius=1.5)
assert_array_equal(rng.A, [[0, 1], [1, 1]])
@pytest.mark.parametrize("algorithm", ALGORITHMS)
def test_k_and_radius_neighbors_X_None(algorithm):
# Test kneighbors et.al when query is None
nn = neighbors.NearestNeighbors(n_neighbors=1, algorithm=algorithm)
X = [[0], [1]]
nn.fit(X)
dist, ind = nn.kneighbors()
assert_array_equal(dist, [[1], [1]])
assert_array_equal(ind, [[1], [0]])
dist, ind = nn.radius_neighbors(None, radius=1.5)
check_object_arrays(dist, [[1], [1]])
check_object_arrays(ind, [[1], [0]])
# Test the graph variants.
rng = nn.radius_neighbors_graph(None, radius=1.5)
kng = nn.kneighbors_graph(None)
for graph in [rng, kng]:
assert_array_equal(graph.A, [[0, 1], [1, 0]])
assert_array_equal(graph.data, [1, 1])
assert_array_equal(graph.indices, [1, 0])
X = [[0, 1], [0, 1], [1, 1]]
nn = neighbors.NearestNeighbors(n_neighbors=2, algorithm=algorithm)
nn.fit(X)
assert_array_equal(
nn.kneighbors_graph().A,
np.array([[0.0, 1.0, 1.0], [1.0, 0.0, 1.0], [1.0, 1.0, 0]]),
)
@pytest.mark.parametrize("algorithm", ALGORITHMS)
def test_k_and_radius_neighbors_duplicates(algorithm):
# Test behavior of kneighbors when duplicates are present in query
nn = neighbors.NearestNeighbors(n_neighbors=1, algorithm=algorithm)
duplicates = [[0], [1], [3]]
nn.fit(duplicates)
# Do not do anything special to duplicates.
kng = nn.kneighbors_graph(duplicates, mode="distance")
assert_allclose(
kng.toarray(), np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
)
assert_allclose(kng.data, [0.0, 0.0, 0.0])
assert_allclose(kng.indices, [0, 1, 2])
dist, ind = nn.radius_neighbors([[0], [1]], radius=1.5)
check_object_arrays(dist, [[0, 1], [1, 0]])
check_object_arrays(ind, [[0, 1], [0, 1]])
rng = nn.radius_neighbors_graph(duplicates, radius=1.5)
assert_allclose(
rng.toarray(), np.array([[1.0, 1.0, 0.0], [1.0, 1.0, 0.0], [0.0, 0.0, 1.0]])
)
rng = nn.radius_neighbors_graph([[0], [1]], radius=1.5, mode="distance")
rng.sort_indices()
assert_allclose(rng.toarray(), [[0, 1, 0], [1, 0, 0]])
assert_allclose(rng.indices, [0, 1, 0, 1])
assert_allclose(rng.data, [0, 1, 1, 0])
# Mask the first duplicates when n_duplicates > n_neighbors.
X = np.ones((3, 1))
nn = neighbors.NearestNeighbors(n_neighbors=1, algorithm="brute")
nn.fit(X)
dist, ind = nn.kneighbors()
assert_allclose(dist, np.zeros((3, 1)))
assert_allclose(ind, [[1], [0], [1]])
# Test that zeros are explicitly marked in kneighbors_graph.
kng = nn.kneighbors_graph(mode="distance")
assert_allclose(kng.toarray(), np.zeros((3, 3)))
assert_allclose(kng.data, np.zeros(3))
assert_allclose(kng.indices, [1, 0, 1])
assert_allclose(
nn.kneighbors_graph().toarray(),
np.array([[0.0, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]),
)
def test_include_self_neighbors_graph():
# Test include_self parameter in neighbors_graph
X = [[2, 3], [4, 5]]
kng = neighbors.kneighbors_graph(X, 1, include_self=True).A
kng_not_self = neighbors.kneighbors_graph(X, 1, include_self=False).A
assert_array_equal(kng, [[1.0, 0.0], [0.0, 1.0]])
assert_array_equal(kng_not_self, [[0.0, 1.0], [1.0, 0.0]])
rng = neighbors.radius_neighbors_graph(X, 5.0, include_self=True).A
rng_not_self = neighbors.radius_neighbors_graph(X, 5.0, include_self=False).A
assert_array_equal(rng, [[1.0, 1.0], [1.0, 1.0]])
assert_array_equal(rng_not_self, [[0.0, 1.0], [1.0, 0.0]])
@pytest.mark.parametrize("algorithm", ALGORITHMS)
def test_same_knn_parallel(algorithm):
X, y = datasets.make_classification(
n_samples=30, n_features=5, n_redundant=0, random_state=0
)
X_train, X_test, y_train, y_test = train_test_split(X, y)
clf = neighbors.KNeighborsClassifier(n_neighbors=3, algorithm=algorithm)
clf.fit(X_train, y_train)
y = clf.predict(X_test)
dist, ind = clf.kneighbors(X_test)
graph = clf.kneighbors_graph(X_test, mode="distance").toarray()
clf.set_params(n_jobs=3)
clf.fit(X_train, y_train)
y_parallel = clf.predict(X_test)
dist_parallel, ind_parallel = clf.kneighbors(X_test)
graph_parallel = clf.kneighbors_graph(X_test, mode="distance").toarray()
assert_array_equal(y, y_parallel)
assert_allclose(dist, dist_parallel)
assert_array_equal(ind, ind_parallel)
assert_allclose(graph, graph_parallel)
@pytest.mark.parametrize("algorithm", ALGORITHMS)
def test_same_radius_neighbors_parallel(algorithm):
X, y = datasets.make_classification(
n_samples=30, n_features=5, n_redundant=0, random_state=0
)
X_train, X_test, y_train, y_test = train_test_split(X, y)
clf = neighbors.RadiusNeighborsClassifier(radius=10, algorithm=algorithm)
clf.fit(X_train, y_train)
y = clf.predict(X_test)
dist, ind = clf.radius_neighbors(X_test)
graph = clf.radius_neighbors_graph(X_test, mode="distance").toarray()
clf.set_params(n_jobs=3)
clf.fit(X_train, y_train)
y_parallel = clf.predict(X_test)
dist_parallel, ind_parallel = clf.radius_neighbors(X_test)
graph_parallel = clf.radius_neighbors_graph(X_test, mode="distance").toarray()
assert_array_equal(y, y_parallel)
for i in range(len(dist)):
assert_allclose(dist[i], dist_parallel[i])
assert_array_equal(ind[i], ind_parallel[i])
assert_allclose(graph, graph_parallel)
@pytest.mark.parametrize("backend", JOBLIB_BACKENDS)
@pytest.mark.parametrize("algorithm", ALGORITHMS)
def test_knn_forcing_backend(backend, algorithm):
# Non-regression test which ensure the knn methods are properly working
# even when forcing the global joblib backend.
with joblib.parallel_backend(backend):
X, y = datasets.make_classification(
n_samples=30, n_features=5, n_redundant=0, random_state=0
)
X_train, X_test, y_train, y_test = train_test_split(X, y)
clf = neighbors.KNeighborsClassifier(
n_neighbors=3, algorithm=algorithm, n_jobs=3
)
clf.fit(X_train, y_train)
clf.predict(X_test)
clf.kneighbors(X_test)
clf.kneighbors_graph(X_test, mode="distance").toarray()
def test_dtype_convert():
classifier = neighbors.KNeighborsClassifier(n_neighbors=1)
CLASSES = 15
X = np.eye(CLASSES)
y = [ch for ch in "ABCDEFGHIJKLMNOPQRSTU"[:CLASSES]]
result = classifier.fit(X, y).predict(X)
assert_array_equal(result, y)
def test_sparse_metric_callable():
def sparse_metric(x, y): # Metric accepting sparse matrix input (only)
assert issparse(x) and issparse(y)
return x.dot(y.T).A.item()
X = csr_matrix(
[[1, 1, 1, 1, 1], [1, 0, 1, 0, 1], [0, 0, 1, 0, 0]] # Population matrix
)
Y = csr_matrix([[1, 1, 0, 1, 1], [1, 0, 0, 0, 1]]) # Query matrix
nn = neighbors.NearestNeighbors(
algorithm="brute", n_neighbors=2, metric=sparse_metric
).fit(X)
N = nn.kneighbors(Y, return_distance=False)
# GS indices of nearest neighbours in `X` for `sparse_metric`
gold_standard_nn = np.array([[2, 1], [2, 1]])
assert_array_equal(N, gold_standard_nn)
# ignore conversion to boolean in pairwise_distances
@ignore_warnings(category=DataConversionWarning)
def test_pairwise_boolean_distance():
# Non-regression test for #4523
# 'brute': uses scipy.spatial.distance through pairwise_distances
# 'ball_tree': uses sklearn.neighbors._dist_metrics
rng = np.random.RandomState(0)
X = rng.uniform(size=(6, 5))
NN = neighbors.NearestNeighbors
nn1 = NN(metric="jaccard", algorithm="brute").fit(X)
nn2 = NN(metric="jaccard", algorithm="ball_tree").fit(X)
assert_array_equal(nn1.kneighbors(X)[0], nn2.kneighbors(X)[0])
def test_radius_neighbors_predict_proba():
for seed in range(5):
X, y = datasets.make_classification(
n_samples=50,
n_features=5,
n_informative=3,
n_redundant=0,
n_classes=3,
random_state=seed,
)
X_tr, X_te, y_tr, y_te = train_test_split(X, y, random_state=0)
outlier_label = int(2 - seed)
clf = neighbors.RadiusNeighborsClassifier(radius=2, outlier_label=outlier_label)
clf.fit(X_tr, y_tr)
pred = clf.predict(X_te)
proba = clf.predict_proba(X_te)
proba_label = proba.argmax(axis=1)
proba_label = np.where(proba.sum(axis=1) == 0, outlier_label, proba_label)
assert_array_equal(pred, proba_label)
def test_pipeline_with_nearest_neighbors_transformer():
# Test chaining KNeighborsTransformer and classifiers/regressors
rng = np.random.RandomState(0)
X = 2 * rng.rand(40, 5) - 1
X2 = 2 * rng.rand(40, 5) - 1
y = rng.rand(40, 1)
n_neighbors = 12
radius = 1.5
# We precompute more neighbors than necessary, to have equivalence between
# k-neighbors estimator after radius-neighbors transformer, and vice-versa.
factor = 2
k_trans = neighbors.KNeighborsTransformer(n_neighbors=n_neighbors, mode="distance")
k_trans_factor = neighbors.KNeighborsTransformer(
n_neighbors=int(n_neighbors * factor), mode="distance"
)
r_trans = neighbors.RadiusNeighborsTransformer(radius=radius, mode="distance")
r_trans_factor = neighbors.RadiusNeighborsTransformer(
radius=int(radius * factor), mode="distance"
)
k_reg = neighbors.KNeighborsRegressor(n_neighbors=n_neighbors)
r_reg = neighbors.RadiusNeighborsRegressor(radius=radius)
test_list = [
(k_trans, k_reg),
(k_trans_factor, r_reg),
(r_trans, r_reg),
(r_trans_factor, k_reg),
]
for trans, reg in test_list:
# compare the chained version and the compact version
reg_compact = clone(reg)
reg_precomp = clone(reg)
reg_precomp.set_params(metric="precomputed")
reg_chain = make_pipeline(clone(trans), reg_precomp)
y_pred_chain = reg_chain.fit(X, y).predict(X2)
y_pred_compact = reg_compact.fit(X, y).predict(X2)
assert_allclose(y_pred_chain, y_pred_compact)
@pytest.mark.parametrize(
"X, metric, metric_params, expected_algo",
[
(np.random.randint(10, size=(10, 10)), "precomputed", None, "brute"),
(np.random.randn(10, 20), "euclidean", None, "brute"),
(np.random.randn(8, 5), "euclidean", None, "brute"),
(np.random.randn(10, 5), "euclidean", None, "kd_tree"),
(np.random.randn(10, 5), "seuclidean", {"V": [2] * 5}, "ball_tree"),
(np.random.randn(10, 5), "correlation", None, "brute"),
],
)
def test_auto_algorithm(X, metric, metric_params, expected_algo):
model = neighbors.NearestNeighbors(
n_neighbors=4, algorithm="auto", metric=metric, metric_params=metric_params
)
model.fit(X)
assert model._fit_method == expected_algo
# TODO: Remove in 1.3
def test_neighbors_distance_metric_deprecation():
from sklearn.neighbors import DistanceMetric
from sklearn.metrics import DistanceMetric as ActualDistanceMetric
msg = r"This import path will be removed in 1\.3"
with pytest.warns(FutureWarning, match=msg):
dist_metric = DistanceMetric.get_metric("euclidean")
assert isinstance(dist_metric, ActualDistanceMetric)
# TODO: Remove filterwarnings in 1.3 when wminkowski is removed
@pytest.mark.filterwarnings("ignore:WMinkowskiDistance:FutureWarning:sklearn")
@pytest.mark.parametrize(
"metric", sorted(set(neighbors.VALID_METRICS["brute"]) - set(["precomputed"]))
)
def test_radius_neighbors_brute_backend(
metric,
n_samples=2000,
n_features=30,
n_query_pts=100,
n_neighbors=5,
radius=1.0,
):
# Both backends for the 'brute' algorithm of radius_neighbors
# must give identical results.
X_train = rng.rand(n_samples, n_features)
X_test = rng.rand(n_query_pts, n_features)
# Haversine distance only accepts 2D data
if metric == "haversine":
feature_sl = slice(None, 2)
X_train = np.ascontiguousarray(X_train[:, feature_sl])
X_test = np.ascontiguousarray(X_test[:, feature_sl])
metric_params_list = _generate_test_params_for(metric, n_features)
# wminkoski is deprecated in SciPy 1.6.0 and removed in 1.8.0
warn_context_manager = nullcontext()
if metric == "wminkowski" and sp_version >= parse_version("1.6.0"):
# For float64 WMinkowskiDistance raises a FutureWarning,
# for float32 scipy raises a DeprecationWarning
warn_context_manager = pytest.warns((FutureWarning, DeprecationWarning))
for metric_params in metric_params_list:
p = metric_params.pop("p", 2)
neigh = neighbors.NearestNeighbors(
n_neighbors=n_neighbors,
radius=radius,
algorithm="brute",
metric=metric,
p=p,
metric_params=metric_params,
)
neigh.fit(X_train)
with warn_context_manager:
with config_context(enable_cython_pairwise_dist=False):
# Use the legacy backend for brute
legacy_brute_dst, legacy_brute_idx = neigh.radius_neighbors(
X_test, return_distance=True
)
with config_context(enable_cython_pairwise_dist=True):
# Use the pairwise-distances reduction backend for brute
pdr_brute_dst, pdr_brute_idx = neigh.radius_neighbors(
X_test, return_distance=True
)
assert_radius_neighbors_results_equality(
legacy_brute_dst,
pdr_brute_dst,
legacy_brute_idx,
pdr_brute_idx,
radius=radius,
)
def test_valid_metrics_has_no_duplicate():
for val in neighbors.VALID_METRICS.values():
assert len(val) == len(set(val))
def test_regressor_predict_on_arraylikes():
"""Ensures that `predict` works for array-likes when `weights` is a callable.
Non-regression test for #22687.
"""
X = [[5, 1], [3, 1], [4, 3], [0, 3]]
y = [2, 3, 5, 6]
def _weights(dist):
return np.ones_like(dist)
est = KNeighborsRegressor(n_neighbors=1, algorithm="brute", weights=_weights)
est.fit(X, y)
assert_allclose(est.predict([[0, 2.5]]), [6])