import pytest from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier from sklearn.utils import shuffle from sklearn.utils._testing import assert_allclose, assert_array_equal from sklearn.model_selection import learning_curve from sklearn.model_selection import LearningCurveDisplay @pytest.fixture def data(): return shuffle(*load_iris(return_X_y=True), random_state=0) @pytest.mark.parametrize( "params, err_type, err_msg", [ ({"std_display_style": "invalid"}, ValueError, "Unknown std_display_style:"), ({"score_type": "invalid"}, ValueError, "Unknown score_type:"), ], ) def test_learning_curve_display_parameters_validation( pyplot, data, params, err_type, err_msg ): """Check that we raise a proper error when passing invalid parameters.""" X, y = data estimator = DecisionTreeClassifier(random_state=0) train_sizes = [0.3, 0.6, 0.9] with pytest.raises(err_type, match=err_msg): LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=train_sizes, **params ) def test_learning_curve_display_default_usage(pyplot, data): """Check the default usage of the LearningCurveDisplay class.""" X, y = data estimator = DecisionTreeClassifier(random_state=0) train_sizes = [0.3, 0.6, 0.9] display = LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=train_sizes ) import matplotlib as mpl assert display.errorbar_ is None assert isinstance(display.lines_, list) for line in display.lines_: assert isinstance(line, mpl.lines.Line2D) assert isinstance(display.fill_between_, list) for fill in display.fill_between_: assert isinstance(fill, mpl.collections.PolyCollection) assert fill.get_alpha() == 0.5 assert display.score_name == "Score" assert display.ax_.get_xlabel() == "Number of samples in the training set" assert display.ax_.get_ylabel() == "Score" _, legend_labels = display.ax_.get_legend_handles_labels() assert legend_labels == ["Testing metric"] train_sizes_abs, train_scores, test_scores = learning_curve( estimator, X, y, train_sizes=train_sizes ) assert_array_equal(display.train_sizes, train_sizes_abs) assert_allclose(display.train_scores, train_scores) assert_allclose(display.test_scores, test_scores) def test_learning_curve_display_negate_score(pyplot, data): """Check the behaviour of the `negate_score` parameter calling `from_estimator` and `plot`. """ X, y = data estimator = DecisionTreeClassifier(max_depth=1, random_state=0) train_sizes = [0.3, 0.6, 0.9] negate_score = False display = LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=train_sizes, negate_score=negate_score, ) positive_scores = display.lines_[0].get_data()[1] assert (positive_scores >= 0).all() assert display.ax_.get_ylabel() == "Score" negate_score = True display = LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=train_sizes, negate_score=negate_score ) negative_scores = display.lines_[0].get_data()[1] assert (negative_scores <= 0).all() assert_allclose(negative_scores, -positive_scores) assert display.ax_.get_ylabel() == "Score" negate_score = False display = LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=train_sizes, negate_score=negate_score, ) assert display.ax_.get_ylabel() == "Score" display.plot(negate_score=not negate_score) assert display.ax_.get_ylabel() == "Score" assert (display.lines_[0].get_data()[1] < 0).all() @pytest.mark.parametrize( "score_name, ylabel", [(None, "Score"), ("Accuracy", "Accuracy")] ) def test_learning_curve_display_score_name(pyplot, data, score_name, ylabel): """Check that we can overwrite the default score name shown on the y-axis.""" X, y = data estimator = DecisionTreeClassifier(random_state=0) train_sizes = [0.3, 0.6, 0.9] display = LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=train_sizes, score_name=score_name ) assert display.ax_.get_ylabel() == ylabel X, y = data estimator = DecisionTreeClassifier(max_depth=1, random_state=0) train_sizes = [0.3, 0.6, 0.9] display = LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=train_sizes, score_name=score_name ) assert display.score_name == ylabel @pytest.mark.parametrize("std_display_style", (None, "errorbar")) def test_learning_curve_display_score_type(pyplot, data, std_display_style): """Check the behaviour of setting the `score_type` parameter.""" X, y = data estimator = DecisionTreeClassifier(random_state=0) train_sizes = [0.3, 0.6, 0.9] train_sizes_abs, train_scores, test_scores = learning_curve( estimator, X, y, train_sizes=train_sizes ) score_type = "train" display = LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=train_sizes, score_type=score_type, std_display_style=std_display_style, ) _, legend_label = display.ax_.get_legend_handles_labels() assert legend_label == ["Training metric"] if std_display_style is None: assert len(display.lines_) == 1 assert display.errorbar_ is None x_data, y_data = display.lines_[0].get_data() else: assert display.lines_ is None assert len(display.errorbar_) == 1 x_data, y_data = display.errorbar_[0].lines[0].get_data() assert_array_equal(x_data, train_sizes_abs) assert_allclose(y_data, train_scores.mean(axis=1)) score_type = "test" display = LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=train_sizes, score_type=score_type, std_display_style=std_display_style, ) _, legend_label = display.ax_.get_legend_handles_labels() assert legend_label == ["Testing metric"] if std_display_style is None: assert len(display.lines_) == 1 assert display.errorbar_ is None x_data, y_data = display.lines_[0].get_data() else: assert display.lines_ is None assert len(display.errorbar_) == 1 x_data, y_data = display.errorbar_[0].lines[0].get_data() assert_array_equal(x_data, train_sizes_abs) assert_allclose(y_data, test_scores.mean(axis=1)) score_type = "both" display = LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=train_sizes, score_type=score_type, std_display_style=std_display_style, ) _, legend_label = display.ax_.get_legend_handles_labels() assert legend_label == ["Training metric", "Testing metric"] if std_display_style is None: assert len(display.lines_) == 2 assert display.errorbar_ is None x_data_train, y_data_train = display.lines_[0].get_data() x_data_test, y_data_test = display.lines_[1].get_data() else: assert display.lines_ is None assert len(display.errorbar_) == 2 x_data_train, y_data_train = display.errorbar_[0].lines[0].get_data() x_data_test, y_data_test = display.errorbar_[1].lines[0].get_data() assert_array_equal(x_data_train, train_sizes_abs) assert_allclose(y_data_train, train_scores.mean(axis=1)) assert_array_equal(x_data_test, train_sizes_abs) assert_allclose(y_data_test, test_scores.mean(axis=1)) def test_learning_curve_display_log_scale(pyplot, data): """Check the behaviour of the parameter `log_scale`.""" X, y = data estimator = DecisionTreeClassifier(random_state=0) train_sizes = [0.3, 0.6, 0.9] display = LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=train_sizes, log_scale=True ) assert display.ax_.get_xscale() == "log" assert display.ax_.get_yscale() == "linear" display = LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=train_sizes, log_scale=False ) assert display.ax_.get_xscale() == "linear" assert display.ax_.get_yscale() == "linear" def test_learning_curve_display_std_display_style(pyplot, data): """Check the behaviour of the parameter `std_display_style`.""" X, y = data estimator = DecisionTreeClassifier(random_state=0) import matplotlib as mpl train_sizes = [0.3, 0.6, 0.9] std_display_style = None display = LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=train_sizes, std_display_style=std_display_style, ) assert len(display.lines_) == 1 assert isinstance(display.lines_[0], mpl.lines.Line2D) assert display.errorbar_ is None assert display.fill_between_ is None _, legend_label = display.ax_.get_legend_handles_labels() assert len(legend_label) == 1 std_display_style = "fill_between" display = LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=train_sizes, std_display_style=std_display_style, ) assert len(display.lines_) == 1 assert isinstance(display.lines_[0], mpl.lines.Line2D) assert display.errorbar_ is None assert len(display.fill_between_) == 1 assert isinstance(display.fill_between_[0], mpl.collections.PolyCollection) _, legend_label = display.ax_.get_legend_handles_labels() assert len(legend_label) == 1 std_display_style = "errorbar" display = LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=train_sizes, std_display_style=std_display_style, ) assert display.lines_ is None assert len(display.errorbar_) == 1 assert isinstance(display.errorbar_[0], mpl.container.ErrorbarContainer) assert display.fill_between_ is None _, legend_label = display.ax_.get_legend_handles_labels() assert len(legend_label) == 1 def test_learning_curve_display_plot_kwargs(pyplot, data): """Check the behaviour of the different plotting keyword arguments: `line_kw`, `fill_between_kw`, and `errorbar_kw`.""" X, y = data estimator = DecisionTreeClassifier(random_state=0) train_sizes = [0.3, 0.6, 0.9] std_display_style = "fill_between" line_kw = {"color": "red"} fill_between_kw = {"color": "red", "alpha": 1.0} display = LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=train_sizes, std_display_style=std_display_style, line_kw=line_kw, fill_between_kw=fill_between_kw, ) assert display.lines_[0].get_color() == "red" assert_allclose( display.fill_between_[0].get_facecolor(), [[1.0, 0.0, 0.0, 1.0]], # trust me, it's red ) std_display_style = "errorbar" errorbar_kw = {"color": "red"} display = LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=train_sizes, std_display_style=std_display_style, errorbar_kw=errorbar_kw, ) assert display.errorbar_[0].lines[0].get_color() == "red"