from __future__ import annotations from typing import ( TYPE_CHECKING, Callable, Hashable, Sequence, cast, ) import numpy as np from pandas._libs import lib from pandas._typing import ( AggFuncType, AggFuncTypeBase, AggFuncTypeDict, IndexLabel, ) from pandas.util._decorators import ( Appender, Substitution, ) from pandas.core.dtypes.cast import maybe_downcast_to_dtype from pandas.core.dtypes.common import ( is_extension_array_dtype, is_integer_dtype, is_list_like, is_nested_list_like, is_scalar, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCSeries, ) import pandas.core.common as com from pandas.core.frame import _shared_docs from pandas.core.groupby import Grouper from pandas.core.indexes.api import ( Index, MultiIndex, get_objs_combined_axis, ) from pandas.core.reshape.concat import concat from pandas.core.reshape.util import cartesian_product from pandas.core.series import Series if TYPE_CHECKING: from pandas import DataFrame # Note: We need to make sure `frame` is imported before `pivot`, otherwise # _shared_docs['pivot_table'] will not yet exist. TODO: Fix this dependency @Substitution("\ndata : DataFrame") @Appender(_shared_docs["pivot_table"], indents=1) def pivot_table( data: DataFrame, values=None, index=None, columns=None, aggfunc: AggFuncType = "mean", fill_value=None, margins: bool = False, dropna: bool = True, margins_name: Hashable = "All", observed: bool = False, sort: bool = True, ) -> DataFrame: index = _convert_by(index) columns = _convert_by(columns) if isinstance(aggfunc, list): pieces: list[DataFrame] = [] keys = [] for func in aggfunc: _table = __internal_pivot_table( data, values=values, index=index, columns=columns, fill_value=fill_value, aggfunc=func, margins=margins, dropna=dropna, margins_name=margins_name, observed=observed, sort=sort, ) pieces.append(_table) keys.append(getattr(func, "__name__", func)) table = concat(pieces, keys=keys, axis=1) return table.__finalize__(data, method="pivot_table") table = __internal_pivot_table( data, values, index, columns, aggfunc, fill_value, margins, dropna, margins_name, observed, sort, ) return table.__finalize__(data, method="pivot_table") def __internal_pivot_table( data: DataFrame, values, index, columns, aggfunc: AggFuncTypeBase | AggFuncTypeDict, fill_value, margins: bool, dropna: bool, margins_name: Hashable, observed: bool, sort: bool, ) -> DataFrame: """ Helper of :func:`pandas.pivot_table` for any non-list ``aggfunc``. """ keys = index + columns values_passed = values is not None if values_passed: if is_list_like(values): values_multi = True values = list(values) else: values_multi = False values = [values] # GH14938 Make sure value labels are in data for i in values: if i not in data: raise KeyError(i) to_filter = [] for x in keys + values: if isinstance(x, Grouper): x = x.key try: if x in data: to_filter.append(x) except TypeError: pass if len(to_filter) < len(data.columns): data = data[to_filter] else: values = data.columns for key in keys: try: values = values.drop(key) except (TypeError, ValueError, KeyError): pass values = list(values) grouped = data.groupby(keys, observed=observed, sort=sort) agged = grouped.agg(aggfunc) if dropna and isinstance(agged, ABCDataFrame) and len(agged.columns): agged = agged.dropna(how="all") # gh-21133 # we want to down cast if # the original values are ints # as we grouped with a NaN value # and then dropped, coercing to floats for v in values: if ( v in data and is_integer_dtype(data[v]) and v in agged and not is_integer_dtype(agged[v]) ): if not isinstance(agged[v], ABCDataFrame) and isinstance( data[v].dtype, np.dtype ): # exclude DataFrame case bc maybe_downcast_to_dtype expects # ArrayLike # e.g. test_pivot_table_multiindex_columns_doctest_case # agged.columns is a MultiIndex and 'v' is indexing only # on its first level. agged[v] = maybe_downcast_to_dtype(agged[v], data[v].dtype) table = agged # GH17038, this check should only happen if index is defined (not None) if table.index.nlevels > 1 and index: # Related GH #17123 # If index_names are integers, determine whether the integers refer # to the level position or name. index_names = agged.index.names[: len(index)] to_unstack = [] for i in range(len(index), len(keys)): name = agged.index.names[i] if name is None or name in index_names: to_unstack.append(i) else: to_unstack.append(name) table = agged.unstack(to_unstack) if not dropna: if isinstance(table.index, MultiIndex): m = MultiIndex.from_arrays( cartesian_product(table.index.levels), names=table.index.names ) table = table.reindex(m, axis=0) if isinstance(table.columns, MultiIndex): m = MultiIndex.from_arrays( cartesian_product(table.columns.levels), names=table.columns.names ) table = table.reindex(m, axis=1) if sort is True and isinstance(table, ABCDataFrame): table = table.sort_index(axis=1) if fill_value is not None: table = table.fillna(fill_value, downcast="infer") if margins: if dropna: data = data[data.notna().all(axis=1)] table = _add_margins( table, data, values, rows=index, cols=columns, aggfunc=aggfunc, observed=dropna, margins_name=margins_name, fill_value=fill_value, ) # discard the top level if values_passed and not values_multi and table.columns.nlevels > 1: table = table.droplevel(0, axis=1) if len(index) == 0 and len(columns) > 0: table = table.T # GH 15193 Make sure empty columns are removed if dropna=True if isinstance(table, ABCDataFrame) and dropna: table = table.dropna(how="all", axis=1) return table def _add_margins( table: DataFrame | Series, data: DataFrame, values, rows, cols, aggfunc, observed=None, margins_name: Hashable = "All", fill_value=None, ): if not isinstance(margins_name, str): raise ValueError("margins_name argument must be a string") msg = f'Conflicting name "{margins_name}" in margins' for level in table.index.names: if margins_name in table.index.get_level_values(level): raise ValueError(msg) grand_margin = _compute_grand_margin(data, values, aggfunc, margins_name) if table.ndim == 2: # i.e. DataFrame for level in table.columns.names[1:]: if margins_name in table.columns.get_level_values(level): raise ValueError(msg) key: str | tuple[str, ...] if len(rows) > 1: key = (margins_name,) + ("",) * (len(rows) - 1) else: key = margins_name if not values and isinstance(table, ABCSeries): # If there are no values and the table is a series, then there is only # one column in the data. Compute grand margin and return it. return table._append(Series({key: grand_margin[margins_name]})) elif values: marginal_result_set = _generate_marginal_results( table, data, values, rows, cols, aggfunc, observed, margins_name ) if not isinstance(marginal_result_set, tuple): return marginal_result_set result, margin_keys, row_margin = marginal_result_set else: # no values, and table is a DataFrame assert isinstance(table, ABCDataFrame) marginal_result_set = _generate_marginal_results_without_values( table, data, rows, cols, aggfunc, observed, margins_name ) if not isinstance(marginal_result_set, tuple): return marginal_result_set result, margin_keys, row_margin = marginal_result_set row_margin = row_margin.reindex(result.columns, fill_value=fill_value) # populate grand margin for k in margin_keys: if isinstance(k, str): row_margin[k] = grand_margin[k] else: row_margin[k] = grand_margin[k[0]] from pandas import DataFrame margin_dummy = DataFrame(row_margin, columns=Index([key])).T row_names = result.index.names # check the result column and leave floats for dtype in set(result.dtypes): if is_extension_array_dtype(dtype): # Can hold NA already continue cols = result.select_dtypes([dtype]).columns margin_dummy[cols] = margin_dummy[cols].apply( maybe_downcast_to_dtype, args=(dtype,) ) result = result._append(margin_dummy) result.index.names = row_names return result def _compute_grand_margin( data: DataFrame, values, aggfunc, margins_name: Hashable = "All" ): if values: grand_margin = {} for k, v in data[values].items(): try: if isinstance(aggfunc, str): grand_margin[k] = getattr(v, aggfunc)() elif isinstance(aggfunc, dict): if isinstance(aggfunc[k], str): grand_margin[k] = getattr(v, aggfunc[k])() else: grand_margin[k] = aggfunc[k](v) else: grand_margin[k] = aggfunc(v) except TypeError: pass return grand_margin else: return {margins_name: aggfunc(data.index)} def _generate_marginal_results( table, data, values, rows, cols, aggfunc, observed, margins_name: Hashable = "All" ): if len(cols) > 0: # need to "interleave" the margins table_pieces = [] margin_keys = [] def _all_key(key): return (key, margins_name) + ("",) * (len(cols) - 1) if len(rows) > 0: margin = data[rows + values].groupby(rows, observed=observed).agg(aggfunc) cat_axis = 1 for key, piece in table.groupby(level=0, axis=cat_axis, observed=observed): all_key = _all_key(key) # we are going to mutate this, so need to copy! piece = piece.copy() piece[all_key] = margin[key] table_pieces.append(piece) margin_keys.append(all_key) else: from pandas import DataFrame cat_axis = 0 for key, piece in table.groupby(level=0, axis=cat_axis, observed=observed): if len(cols) > 1: all_key = _all_key(key) else: all_key = margins_name table_pieces.append(piece) # GH31016 this is to calculate margin for each group, and assign # corresponded key as index transformed_piece = DataFrame(piece.apply(aggfunc)).T if isinstance(piece.index, MultiIndex): # We are adding an empty level transformed_piece.index = MultiIndex.from_tuples( [all_key], names=piece.index.names + [None] ) else: transformed_piece.index = Index([all_key], name=piece.index.name) # append piece for margin into table_piece table_pieces.append(transformed_piece) margin_keys.append(all_key) if not table_pieces: # GH 49240 return table else: result = concat(table_pieces, axis=cat_axis) if len(rows) == 0: return result else: result = table margin_keys = table.columns if len(cols) > 0: row_margin = data[cols + values].groupby(cols, observed=observed).agg(aggfunc) row_margin = row_margin.stack() # slight hack new_order = [len(cols)] + list(range(len(cols))) row_margin.index = row_margin.index.reorder_levels(new_order) else: row_margin = Series(np.nan, index=result.columns) return result, margin_keys, row_margin def _generate_marginal_results_without_values( table: DataFrame, data, rows, cols, aggfunc, observed, margins_name: Hashable = "All", ): if len(cols) > 0: # need to "interleave" the margins margin_keys: list | Index = [] def _all_key(): if len(cols) == 1: return margins_name return (margins_name,) + ("",) * (len(cols) - 1) if len(rows) > 0: margin = data[rows].groupby(rows, observed=observed).apply(aggfunc) all_key = _all_key() table[all_key] = margin result = table margin_keys.append(all_key) else: margin = data.groupby(level=0, axis=0, observed=observed).apply(aggfunc) all_key = _all_key() table[all_key] = margin result = table margin_keys.append(all_key) return result else: result = table margin_keys = table.columns if len(cols): row_margin = data[cols].groupby(cols, observed=observed).apply(aggfunc) else: row_margin = Series(np.nan, index=result.columns) return result, margin_keys, row_margin def _convert_by(by): if by is None: by = [] elif ( is_scalar(by) or isinstance(by, (np.ndarray, Index, ABCSeries, Grouper)) or callable(by) ): by = [by] else: by = list(by) return by @Substitution("\ndata : DataFrame") @Appender(_shared_docs["pivot"], indents=1) def pivot( data: DataFrame, *, columns: IndexLabel, index: IndexLabel | lib.NoDefault = lib.NoDefault, values: IndexLabel | lib.NoDefault = lib.NoDefault, ) -> DataFrame: columns_listlike = com.convert_to_list_like(columns) # If columns is None we will create a MultiIndex level with None as name # which might cause duplicated names because None is the default for # level names data = data.copy(deep=False) data.index = data.index.copy() data.index.names = [ name if name is not None else lib.NoDefault for name in data.index.names ] indexed: DataFrame | Series if values is lib.NoDefault: if index is not lib.NoDefault: cols = com.convert_to_list_like(index) else: cols = [] append = index is lib.NoDefault # error: Unsupported operand types for + ("List[Any]" and "ExtensionArray") # error: Unsupported left operand type for + ("ExtensionArray") indexed = data.set_index( cols + columns_listlike, append=append # type: ignore[operator] ) else: if index is lib.NoDefault: if isinstance(data.index, MultiIndex): # GH 23955 index_list = [ data.index.get_level_values(i) for i in range(data.index.nlevels) ] else: index_list = [Series(data.index, name=data.index.name)] else: index_list = [data[idx] for idx in com.convert_to_list_like(index)] data_columns = [data[col] for col in columns_listlike] index_list.extend(data_columns) multiindex = MultiIndex.from_arrays(index_list) if is_list_like(values) and not isinstance(values, tuple): # Exclude tuple because it is seen as a single column name values = cast(Sequence[Hashable], values) indexed = data._constructor( data[values]._values, index=multiindex, columns=values ) else: indexed = data._constructor_sliced(data[values]._values, index=multiindex) # error: Argument 1 to "unstack" of "DataFrame" has incompatible type "Union # [List[Any], ExtensionArray, ndarray[Any, Any], Index, Series]"; expected # "Hashable" result = indexed.unstack(columns_listlike) # type: ignore[arg-type] result.index.names = [ name if name is not lib.NoDefault else None for name in result.index.names ] return result def crosstab( index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins: bool = False, margins_name: Hashable = "All", dropna: bool = True, normalize: bool = False, ) -> DataFrame: """ Compute a simple cross tabulation of two (or more) factors. By default, computes a frequency table of the factors unless an array of values and an aggregation function are passed. Parameters ---------- index : array-like, Series, or list of arrays/Series Values to group by in the rows. columns : array-like, Series, or list of arrays/Series Values to group by in the columns. values : array-like, optional Array of values to aggregate according to the factors. Requires `aggfunc` be specified. rownames : sequence, default None If passed, must match number of row arrays passed. colnames : sequence, default None If passed, must match number of column arrays passed. aggfunc : function, optional If specified, requires `values` be specified as well. margins : bool, default False Add row/column margins (subtotals). margins_name : str, default 'All' Name of the row/column that will contain the totals when margins is True. dropna : bool, default True Do not include columns whose entries are all NaN. normalize : bool, {'all', 'index', 'columns'}, or {0,1}, default False Normalize by dividing all values by the sum of values. - If passed 'all' or `True`, will normalize over all values. - If passed 'index' will normalize over each row. - If passed 'columns' will normalize over each column. - If margins is `True`, will also normalize margin values. Returns ------- DataFrame Cross tabulation of the data. See Also -------- DataFrame.pivot : Reshape data based on column values. pivot_table : Create a pivot table as a DataFrame. Notes ----- Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are specified. Any input passed containing Categorical data will have **all** of its categories included in the cross-tabulation, even if the actual data does not contain any instances of a particular category. In the event that there aren't overlapping indexes an empty DataFrame will be returned. Reference :ref:`the user guide <reshaping.crosstabulations>` for more examples. Examples -------- >>> a = np.array(["foo", "foo", "foo", "foo", "bar", "bar", ... "bar", "bar", "foo", "foo", "foo"], dtype=object) >>> b = np.array(["one", "one", "one", "two", "one", "one", ... "one", "two", "two", "two", "one"], dtype=object) >>> c = np.array(["dull", "dull", "shiny", "dull", "dull", "shiny", ... "shiny", "dull", "shiny", "shiny", "shiny"], ... dtype=object) >>> pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c']) b one two c dull shiny dull shiny a bar 1 2 1 0 foo 2 2 1 2 Here 'c' and 'f' are not represented in the data and will not be shown in the output because dropna is True by default. Set dropna=False to preserve categories with no data. >>> foo = pd.Categorical(['a', 'b'], categories=['a', 'b', 'c']) >>> bar = pd.Categorical(['d', 'e'], categories=['d', 'e', 'f']) >>> pd.crosstab(foo, bar) col_0 d e row_0 a 1 0 b 0 1 >>> pd.crosstab(foo, bar, dropna=False) col_0 d e f row_0 a 1 0 0 b 0 1 0 c 0 0 0 """ if values is None and aggfunc is not None: raise ValueError("aggfunc cannot be used without values.") if values is not None and aggfunc is None: raise ValueError("values cannot be used without an aggfunc.") if not is_nested_list_like(index): index = [index] if not is_nested_list_like(columns): columns = [columns] common_idx = None pass_objs = [x for x in index + columns if isinstance(x, (ABCSeries, ABCDataFrame))] if pass_objs: common_idx = get_objs_combined_axis(pass_objs, intersect=True, sort=False) rownames = _get_names(index, rownames, prefix="row") colnames = _get_names(columns, colnames, prefix="col") # duplicate names mapped to unique names for pivot op ( rownames_mapper, unique_rownames, colnames_mapper, unique_colnames, ) = _build_names_mapper(rownames, colnames) from pandas import DataFrame data = { **dict(zip(unique_rownames, index)), **dict(zip(unique_colnames, columns)), } df = DataFrame(data, index=common_idx) if values is None: df["__dummy__"] = 0 kwargs = {"aggfunc": len, "fill_value": 0} else: df["__dummy__"] = values kwargs = {"aggfunc": aggfunc} # error: Argument 7 to "pivot_table" of "DataFrame" has incompatible type # "**Dict[str, object]"; expected "Union[...]" table = df.pivot_table( "__dummy__", index=unique_rownames, columns=unique_colnames, margins=margins, margins_name=margins_name, dropna=dropna, **kwargs, # type: ignore[arg-type] ) # Post-process if normalize is not False: table = _normalize( table, normalize=normalize, margins=margins, margins_name=margins_name ) table = table.rename_axis(index=rownames_mapper, axis=0) table = table.rename_axis(columns=colnames_mapper, axis=1) return table def _normalize( table: DataFrame, normalize, margins: bool, margins_name: Hashable = "All" ) -> DataFrame: if not isinstance(normalize, (bool, str)): axis_subs = {0: "index", 1: "columns"} try: normalize = axis_subs[normalize] except KeyError as err: raise ValueError("Not a valid normalize argument") from err if margins is False: # Actual Normalizations normalizers: dict[bool | str, Callable] = { "all": lambda x: x / x.sum(axis=1).sum(axis=0), "columns": lambda x: x / x.sum(), "index": lambda x: x.div(x.sum(axis=1), axis=0), } normalizers[True] = normalizers["all"] try: f = normalizers[normalize] except KeyError as err: raise ValueError("Not a valid normalize argument") from err table = f(table) table = table.fillna(0) elif margins is True: # keep index and column of pivoted table table_index = table.index table_columns = table.columns last_ind_or_col = table.iloc[-1, :].name # check if margin name is not in (for MI cases) and not equal to last # index/column and save the column and index margin if (margins_name not in last_ind_or_col) & (margins_name != last_ind_or_col): raise ValueError(f"{margins_name} not in pivoted DataFrame") column_margin = table.iloc[:-1, -1] index_margin = table.iloc[-1, :-1] # keep the core table table = table.iloc[:-1, :-1] # Normalize core table = _normalize(table, normalize=normalize, margins=False) # Fix Margins if normalize == "columns": column_margin = column_margin / column_margin.sum() table = concat([table, column_margin], axis=1) table = table.fillna(0) table.columns = table_columns elif normalize == "index": index_margin = index_margin / index_margin.sum() table = table._append(index_margin) table = table.fillna(0) table.index = table_index elif normalize == "all" or normalize is True: column_margin = column_margin / column_margin.sum() index_margin = index_margin / index_margin.sum() index_margin.loc[margins_name] = 1 table = concat([table, column_margin], axis=1) table = table._append(index_margin) table = table.fillna(0) table.index = table_index table.columns = table_columns else: raise ValueError("Not a valid normalize argument") else: raise ValueError("Not a valid margins argument") return table def _get_names(arrs, names, prefix: str = "row"): if names is None: names = [] for i, arr in enumerate(arrs): if isinstance(arr, ABCSeries) and arr.name is not None: names.append(arr.name) else: names.append(f"{prefix}_{i}") else: if len(names) != len(arrs): raise AssertionError("arrays and names must have the same length") if not isinstance(names, list): names = list(names) return names def _build_names_mapper( rownames: list[str], colnames: list[str] ) -> tuple[dict[str, str], list[str], dict[str, str], list[str]]: """ Given the names of a DataFrame's rows and columns, returns a set of unique row and column names and mappers that convert to original names. A row or column name is replaced if it is duplicate among the rows of the inputs, among the columns of the inputs or between the rows and the columns. Parameters ---------- rownames: list[str] colnames: list[str] Returns ------- Tuple(Dict[str, str], List[str], Dict[str, str], List[str]) rownames_mapper: dict[str, str] a dictionary with new row names as keys and original rownames as values unique_rownames: list[str] a list of rownames with duplicate names replaced by dummy names colnames_mapper: dict[str, str] a dictionary with new column names as keys and original column names as values unique_colnames: list[str] a list of column names with duplicate names replaced by dummy names """ def get_duplicates(names): seen: set = set() return {name for name in names if name not in seen} shared_names = set(rownames).intersection(set(colnames)) dup_names = get_duplicates(rownames) | get_duplicates(colnames) | shared_names rownames_mapper = { f"row_{i}": name for i, name in enumerate(rownames) if name in dup_names } unique_rownames = [ f"row_{i}" if name in dup_names else name for i, name in enumerate(rownames) ] colnames_mapper = { f"col_{i}": name for i, name in enumerate(colnames) if name in dup_names } unique_colnames = [ f"col_{i}" if name in dup_names else name for i, name in enumerate(colnames) ] return rownames_mapper, unique_rownames, colnames_mapper, unique_colnames