""" Generic data algorithms. This module is experimental at the moment and not intended for public consumption """ from __future__ import annotations import operator from textwrap import dedent from typing import ( TYPE_CHECKING, Literal, cast, ) import warnings import numpy as np from pandas._libs import ( algos, hashtable as htable, iNaT, lib, ) from pandas._typing import ( AnyArrayLike, ArrayLike, AxisInt, DtypeObj, TakeIndexer, npt, ) from pandas.util._decorators import doc from pandas.util._exceptions import find_stack_level from pandas.core.dtypes.cast import ( construct_1d_object_array_from_listlike, infer_dtype_from_array, np_find_common_type, ) from pandas.core.dtypes.common import ( ensure_float64, ensure_object, ensure_platform_int, is_array_like, is_bool_dtype, is_categorical_dtype, is_complex_dtype, is_extension_array_dtype, is_float_dtype, is_integer, is_integer_dtype, is_list_like, is_numeric_dtype, is_object_dtype, is_scalar, is_signed_integer_dtype, needs_i8_conversion, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.dtypes import ( BaseMaskedDtype, ExtensionDtype, PandasDtype, ) from pandas.core.dtypes.generic import ( ABCDatetimeArray, ABCExtensionArray, ABCIndex, ABCMultiIndex, ABCSeries, ABCTimedeltaArray, ) from pandas.core.dtypes.missing import ( isna, na_value_for_dtype, ) from pandas.core.array_algos.take import take_nd from pandas.core.construction import ( array as pd_array, ensure_wrapped_if_datetimelike, extract_array, ) from pandas.core.indexers import validate_indices if TYPE_CHECKING: from pandas._typing import ( NumpySorter, NumpyValueArrayLike, ) from pandas import ( Categorical, Index, Series, ) from pandas.core.arrays import ( BaseMaskedArray, ExtensionArray, ) # --------------- # # dtype access # # --------------- # def _ensure_data(values: ArrayLike) -> np.ndarray: """ routine to ensure that our data is of the correct input dtype for lower-level routines This will coerce: - ints -> int64 - uint -> uint64 - bool -> uint8 - datetimelike -> i8 - datetime64tz -> i8 (in local tz) - categorical -> codes Parameters ---------- values : np.ndarray or ExtensionArray Returns ------- np.ndarray """ if not isinstance(values, ABCMultiIndex): # extract_array would raise values = extract_array(values, extract_numpy=True) if is_object_dtype(values.dtype): return ensure_object(np.asarray(values)) elif isinstance(values.dtype, BaseMaskedDtype): # i.e. BooleanArray, FloatingArray, IntegerArray values = cast("BaseMaskedArray", values) if not values._hasna: # No pd.NAs -> We can avoid an object-dtype cast (and copy) GH#41816 # recurse to avoid re-implementing logic for eg bool->uint8 return _ensure_data(values._data) return np.asarray(values) elif is_categorical_dtype(values.dtype): # NB: cases that go through here should NOT be using _reconstruct_data # on the back-end. values = cast("Categorical", values) return values.codes elif is_bool_dtype(values.dtype): if isinstance(values, np.ndarray): # i.e. actually dtype == np.dtype("bool") return np.asarray(values).view("uint8") else: # e.g. Sparse[bool, False] # TODO: no test cases get here return np.asarray(values).astype("uint8", copy=False) elif is_integer_dtype(values.dtype): return np.asarray(values) elif is_float_dtype(values.dtype): # Note: checking `values.dtype == "float128"` raises on Windows and 32bit # error: Item "ExtensionDtype" of "Union[Any, ExtensionDtype, dtype[Any]]" # has no attribute "itemsize" if values.dtype.itemsize in [2, 12, 16]: # type: ignore[union-attr] # we dont (yet) have float128 hashtable support return ensure_float64(values) return np.asarray(values) elif is_complex_dtype(values.dtype): return cast(np.ndarray, values) # datetimelike elif needs_i8_conversion(values.dtype): npvalues = values.view("i8") npvalues = cast(np.ndarray, npvalues) return npvalues # we have failed, return object values = np.asarray(values, dtype=object) return ensure_object(values) def _reconstruct_data( values: ArrayLike, dtype: DtypeObj, original: AnyArrayLike ) -> ArrayLike: """ reverse of _ensure_data Parameters ---------- values : np.ndarray or ExtensionArray dtype : np.dtype or ExtensionDtype original : AnyArrayLike Returns ------- ExtensionArray or np.ndarray """ if isinstance(values, ABCExtensionArray) and values.dtype == dtype: # Catch DatetimeArray/TimedeltaArray return values if not isinstance(dtype, np.dtype): # i.e. ExtensionDtype; note we have ruled out above the possibility # that values.dtype == dtype cls = dtype.construct_array_type() values = cls._from_sequence(values, dtype=dtype) else: values = values.astype(dtype, copy=False) return values def _ensure_arraylike(values) -> ArrayLike: """ ensure that we are arraylike if not already """ if not is_array_like(values): inferred = lib.infer_dtype(values, skipna=False) if inferred in ["mixed", "string", "mixed-integer"]: # "mixed-integer" to ensure we do not cast ["ss", 42] to str GH#22160 if isinstance(values, tuple): values = list(values) values = construct_1d_object_array_from_listlike(values) else: values = np.asarray(values) return values _hashtables = { "complex128": htable.Complex128HashTable, "complex64": htable.Complex64HashTable, "float64": htable.Float64HashTable, "float32": htable.Float32HashTable, "uint64": htable.UInt64HashTable, "uint32": htable.UInt32HashTable, "uint16": htable.UInt16HashTable, "uint8": htable.UInt8HashTable, "int64": htable.Int64HashTable, "int32": htable.Int32HashTable, "int16": htable.Int16HashTable, "int8": htable.Int8HashTable, "string": htable.StringHashTable, "object": htable.PyObjectHashTable, } def _get_hashtable_algo(values: np.ndarray): """ Parameters ---------- values : np.ndarray Returns ------- htable : HashTable subclass values : ndarray """ values = _ensure_data(values) ndtype = _check_object_for_strings(values) hashtable = _hashtables[ndtype] return hashtable, values def _check_object_for_strings(values: np.ndarray) -> str: """ Check if we can use string hashtable instead of object hashtable. Parameters ---------- values : ndarray Returns ------- str """ ndtype = values.dtype.name if ndtype == "object": # it's cheaper to use a String Hash Table than Object; we infer # including nulls because that is the only difference between # StringHashTable and ObjectHashtable if lib.infer_dtype(values, skipna=False) in ["string"]: ndtype = "string" return ndtype # --------------- # # top-level algos # # --------------- # def unique(values): """ Return unique values based on a hash table. Uniques are returned in order of appearance. This does NOT sort. Significantly faster than numpy.unique for long enough sequences. Includes NA values. Parameters ---------- values : 1d array-like Returns ------- numpy.ndarray or ExtensionArray The return can be: * Index : when the input is an Index * Categorical : when the input is a Categorical dtype * ndarray : when the input is a Series/ndarray Return numpy.ndarray or ExtensionArray. See Also -------- Index.unique : Return unique values from an Index. Series.unique : Return unique values of Series object. Examples -------- >>> pd.unique(pd.Series([2, 1, 3, 3])) array([2, 1, 3]) >>> pd.unique(pd.Series([2] + [1] * 5)) array([2, 1]) >>> pd.unique(pd.Series([pd.Timestamp("20160101"), pd.Timestamp("20160101")])) array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') >>> pd.unique( ... pd.Series( ... [ ... pd.Timestamp("20160101", tz="US/Eastern"), ... pd.Timestamp("20160101", tz="US/Eastern"), ... ] ... ) ... ) ['2016-01-01 00:00:00-05:00'] Length: 1, dtype: datetime64[ns, US/Eastern] >>> pd.unique( ... pd.Index( ... [ ... pd.Timestamp("20160101", tz="US/Eastern"), ... pd.Timestamp("20160101", tz="US/Eastern"), ... ] ... ) ... ) DatetimeIndex(['2016-01-01 00:00:00-05:00'], dtype='datetime64[ns, US/Eastern]', freq=None) >>> pd.unique(list("baabc")) array(['b', 'a', 'c'], dtype=object) An unordered Categorical will return categories in the order of appearance. >>> pd.unique(pd.Series(pd.Categorical(list("baabc")))) ['b', 'a', 'c'] Categories (3, object): ['a', 'b', 'c'] >>> pd.unique(pd.Series(pd.Categorical(list("baabc"), categories=list("abc")))) ['b', 'a', 'c'] Categories (3, object): ['a', 'b', 'c'] An ordered Categorical preserves the category ordering. >>> pd.unique( ... pd.Series( ... pd.Categorical(list("baabc"), categories=list("abc"), ordered=True) ... ) ... ) ['b', 'a', 'c'] Categories (3, object): ['a' < 'b' < 'c'] An array of tuples >>> pd.unique([("a", "b"), ("b", "a"), ("a", "c"), ("b", "a")]) array([('a', 'b'), ('b', 'a'), ('a', 'c')], dtype=object) """ return unique_with_mask(values) def nunique_ints(values: ArrayLike) -> int: """ Return the number of unique values for integer array-likes. Significantly faster than pandas.unique for long enough sequences. No checks are done to ensure input is integral. Parameters ---------- values : 1d array-like Returns ------- int : The number of unique values in ``values`` """ if len(values) == 0: return 0 values = _ensure_data(values) # bincount requires intp result = (np.bincount(values.ravel().astype("intp")) != 0).sum() return result def unique_with_mask(values, mask: npt.NDArray[np.bool_] | None = None): """See algorithms.unique for docs. Takes a mask for masked arrays.""" values = _ensure_arraylike(values) if is_extension_array_dtype(values.dtype): # Dispatch to extension dtype's unique. return values.unique() original = values hashtable, values = _get_hashtable_algo(values) table = hashtable(len(values)) if mask is None: uniques = table.unique(values) uniques = _reconstruct_data(uniques, original.dtype, original) return uniques else: uniques, mask = table.unique(values, mask=mask) uniques = _reconstruct_data(uniques, original.dtype, original) assert mask is not None # for mypy return uniques, mask.astype("bool") unique1d = unique def isin(comps: AnyArrayLike, values: AnyArrayLike) -> npt.NDArray[np.bool_]: """ Compute the isin boolean array. Parameters ---------- comps : array-like values : array-like Returns ------- ndarray[bool] Same length as `comps`. """ if not is_list_like(comps): raise TypeError( "only list-like objects are allowed to be passed " f"to isin(), you passed a [{type(comps).__name__}]" ) if not is_list_like(values): raise TypeError( "only list-like objects are allowed to be passed " f"to isin(), you passed a [{type(values).__name__}]" ) if not isinstance(values, (ABCIndex, ABCSeries, ABCExtensionArray, np.ndarray)): orig_values = list(values) values = _ensure_arraylike(orig_values) if ( len(values) > 0 and is_numeric_dtype(values) and not is_signed_integer_dtype(comps) ): # GH#46485 Use object to avoid upcast to float64 later # TODO: Share with _find_common_type_compat values = construct_1d_object_array_from_listlike(orig_values) elif isinstance(values, ABCMultiIndex): # Avoid raising in extract_array values = np.array(values) else: values = extract_array(values, extract_numpy=True, extract_range=True) comps_array = _ensure_arraylike(comps) comps_array = extract_array(comps_array, extract_numpy=True) if not isinstance(comps_array, np.ndarray): # i.e. Extension Array return comps_array.isin(values) elif needs_i8_conversion(comps_array.dtype): # Dispatch to DatetimeLikeArrayMixin.isin return pd_array(comps_array).isin(values) elif needs_i8_conversion(values.dtype) and not is_object_dtype(comps_array.dtype): # e.g. comps_array are integers and values are datetime64s return np.zeros(comps_array.shape, dtype=bool) # TODO: not quite right ... Sparse/Categorical elif needs_i8_conversion(values.dtype): return isin(comps_array, values.astype(object)) elif isinstance(values.dtype, ExtensionDtype): return isin(np.asarray(comps_array), np.asarray(values)) # GH16012 # Ensure np.in1d doesn't get object types or it *may* throw an exception # Albeit hashmap has O(1) look-up (vs. O(logn) in sorted array), # in1d is faster for small sizes if ( len(comps_array) > 1_000_000 and len(values) <= 26 and not is_object_dtype(comps_array) ): # If the values include nan we need to check for nan explicitly # since np.nan it not equal to np.nan if isna(values).any(): def f(c, v): return np.logical_or(np.in1d(c, v), np.isnan(c)) else: f = np.in1d else: common = np_find_common_type(values.dtype, comps_array.dtype) values = values.astype(common, copy=False) comps_array = comps_array.astype(common, copy=False) f = htable.ismember return f(comps_array, values) def factorize_array( values: np.ndarray, use_na_sentinel: bool = True, size_hint: int | None = None, na_value: object = None, mask: npt.NDArray[np.bool_] | None = None, ) -> tuple[npt.NDArray[np.intp], np.ndarray]: """ Factorize a numpy array to codes and uniques. This doesn't do any coercion of types or unboxing before factorization. Parameters ---------- values : ndarray use_na_sentinel : bool, default True If True, the sentinel -1 will be used for NaN values. If False, NaN values will be encoded as non-negative integers and will not drop the NaN from the uniques of the values. size_hint : int, optional Passed through to the hashtable's 'get_labels' method na_value : object, optional A value in `values` to consider missing. Note: only use this parameter when you know that you don't have any values pandas would consider missing in the array (NaN for float data, iNaT for datetimes, etc.). mask : ndarray[bool], optional If not None, the mask is used as indicator for missing values (True = missing, False = valid) instead of `na_value` or condition "val != val". Returns ------- codes : ndarray[np.intp] uniques : ndarray """ original = values if values.dtype.kind in ["m", "M"]: # _get_hashtable_algo will cast dt64/td64 to i8 via _ensure_data, so we # need to do the same to na_value. We are assuming here that the passed # na_value is an appropriately-typed NaT. # e.g. test_where_datetimelike_categorical na_value = iNaT hash_klass, values = _get_hashtable_algo(values) table = hash_klass(size_hint or len(values)) uniques, codes = table.factorize( values, na_sentinel=-1, na_value=na_value, mask=mask, ignore_na=use_na_sentinel, ) # re-cast e.g. i8->dt64/td64, uint8->bool uniques = _reconstruct_data(uniques, original.dtype, original) codes = ensure_platform_int(codes) return codes, uniques @doc( values=dedent( """\ values : sequence A 1-D sequence. Sequences that aren't pandas objects are coerced to ndarrays before factorization. """ ), sort=dedent( """\ sort : bool, default False Sort `uniques` and shuffle `codes` to maintain the relationship. """ ), size_hint=dedent( """\ size_hint : int, optional Hint to the hashtable sizer. """ ), ) def factorize( values, sort: bool = False, use_na_sentinel: bool = True, size_hint: int | None = None, ) -> tuple[np.ndarray, np.ndarray | Index]: """ Encode the object as an enumerated type or categorical variable. This method is useful for obtaining a numeric representation of an array when all that matters is identifying distinct values. `factorize` is available as both a top-level function :func:`pandas.factorize`, and as a method :meth:`Series.factorize` and :meth:`Index.factorize`. Parameters ---------- {values}{sort} use_na_sentinel : bool, default True If True, the sentinel -1 will be used for NaN values. If False, NaN values will be encoded as non-negative integers and will not drop the NaN from the uniques of the values. .. versionadded:: 1.5.0 {size_hint}\ Returns ------- codes : ndarray An integer ndarray that's an indexer into `uniques`. ``uniques.take(codes)`` will have the same values as `values`. uniques : ndarray, Index, or Categorical The unique valid values. When `values` is Categorical, `uniques` is a Categorical. When `values` is some other pandas object, an `Index` is returned. Otherwise, a 1-D ndarray is returned. .. note:: Even if there's a missing value in `values`, `uniques` will *not* contain an entry for it. See Also -------- cut : Discretize continuous-valued array. unique : Find the unique value in an array. Notes ----- Reference :ref:`the user guide ` for more examples. Examples -------- These examples all show factorize as a top-level method like ``pd.factorize(values)``. The results are identical for methods like :meth:`Series.factorize`. >>> codes, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b']) >>> codes array([0, 0, 1, 2, 0]) >>> uniques array(['b', 'a', 'c'], dtype=object) With ``sort=True``, the `uniques` will be sorted, and `codes` will be shuffled so that the relationship is the maintained. >>> codes, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b'], sort=True) >>> codes array([1, 1, 0, 2, 1]) >>> uniques array(['a', 'b', 'c'], dtype=object) When ``use_na_sentinel=True`` (the default), missing values are indicated in the `codes` with the sentinel value ``-1`` and missing values are not included in `uniques`. >>> codes, uniques = pd.factorize(['b', None, 'a', 'c', 'b']) >>> codes array([ 0, -1, 1, 2, 0]) >>> uniques array(['b', 'a', 'c'], dtype=object) Thus far, we've only factorized lists (which are internally coerced to NumPy arrays). When factorizing pandas objects, the type of `uniques` will differ. For Categoricals, a `Categorical` is returned. >>> cat = pd.Categorical(['a', 'a', 'c'], categories=['a', 'b', 'c']) >>> codes, uniques = pd.factorize(cat) >>> codes array([0, 0, 1]) >>> uniques ['a', 'c'] Categories (3, object): ['a', 'b', 'c'] Notice that ``'b'`` is in ``uniques.categories``, despite not being present in ``cat.values``. For all other pandas objects, an Index of the appropriate type is returned. >>> cat = pd.Series(['a', 'a', 'c']) >>> codes, uniques = pd.factorize(cat) >>> codes array([0, 0, 1]) >>> uniques Index(['a', 'c'], dtype='object') If NaN is in the values, and we want to include NaN in the uniques of the values, it can be achieved by setting ``use_na_sentinel=False``. >>> values = np.array([1, 2, 1, np.nan]) >>> codes, uniques = pd.factorize(values) # default: use_na_sentinel=True >>> codes array([ 0, 1, 0, -1]) >>> uniques array([1., 2.]) >>> codes, uniques = pd.factorize(values, use_na_sentinel=False) >>> codes array([0, 1, 0, 2]) >>> uniques array([ 1., 2., nan]) """ # Implementation notes: This method is responsible for 3 things # 1.) coercing data to array-like (ndarray, Index, extension array) # 2.) factorizing codes and uniques # 3.) Maybe boxing the uniques in an Index # # Step 2 is dispatched to extension types (like Categorical). They are # responsible only for factorization. All data coercion, sorting and boxing # should happen here. if isinstance(values, (ABCIndex, ABCSeries)): return values.factorize(sort=sort, use_na_sentinel=use_na_sentinel) values = _ensure_arraylike(values) original = values if ( isinstance(values, (ABCDatetimeArray, ABCTimedeltaArray)) and values.freq is not None ): # The presence of 'freq' means we can fast-path sorting and know there # aren't NAs codes, uniques = values.factorize(sort=sort) return codes, uniques elif not isinstance(values, np.ndarray): # i.e. ExtensionArray codes, uniques = values.factorize(use_na_sentinel=use_na_sentinel) else: values = np.asarray(values) # convert DTA/TDA/MultiIndex if not use_na_sentinel and is_object_dtype(values): # factorize can now handle differentiating various types of null values. # These can only occur when the array has object dtype. # However, for backwards compatibility we only use the null for the # provided dtype. This may be revisited in the future, see GH#48476. null_mask = isna(values) if null_mask.any(): na_value = na_value_for_dtype(values.dtype, compat=False) # Don't modify (potentially user-provided) array values = np.where(null_mask, na_value, values) codes, uniques = factorize_array( values, use_na_sentinel=use_na_sentinel, size_hint=size_hint, ) if sort and len(uniques) > 0: uniques, codes = safe_sort( uniques, codes, use_na_sentinel=use_na_sentinel, assume_unique=True, verify=False, ) uniques = _reconstruct_data(uniques, original.dtype, original) return codes, uniques def value_counts( values, sort: bool = True, ascending: bool = False, normalize: bool = False, bins=None, dropna: bool = True, ) -> Series: """ Compute a histogram of the counts of non-null values. Parameters ---------- values : ndarray (1-d) sort : bool, default True Sort by values ascending : bool, default False Sort in ascending order normalize: bool, default False If True then compute a relative histogram bins : integer, optional Rather than count values, group them into half-open bins, convenience for pd.cut, only works with numeric data dropna : bool, default True Don't include counts of NaN Returns ------- Series """ from pandas import ( Index, Series, ) index_name = getattr(values, "name", None) name = "proportion" if normalize else "count" if bins is not None: from pandas.core.reshape.tile import cut values = Series(values, copy=False) try: ii = cut(values, bins, include_lowest=True) except TypeError as err: raise TypeError("bins argument only works with numeric data.") from err # count, remove nulls (from the index), and but the bins result = ii.value_counts(dropna=dropna) result.name = name result = result[result.index.notna()] result.index = result.index.astype("interval") result = result.sort_index() # if we are dropna and we have NO values if dropna and (result._values == 0).all(): result = result.iloc[0:0] # normalizing is by len of all (regardless of dropna) counts = np.array([len(ii)]) else: if is_extension_array_dtype(values): # handle Categorical and sparse, result = Series(values, copy=False)._values.value_counts(dropna=dropna) result.name = name result.index.name = index_name counts = result._values if not isinstance(counts, np.ndarray): # e.g. ArrowExtensionArray counts = np.asarray(counts) elif isinstance(values, ABCMultiIndex): # GH49558 levels = list(range(values.nlevels)) result = ( Series(index=values, name=name) .groupby(level=levels, dropna=dropna) .size() ) result.index.names = values.names counts = result._values else: values = _ensure_arraylike(values) keys, counts = value_counts_arraylike(values, dropna) if keys.dtype == np.float16: keys = keys.astype(np.float32) # For backwards compatibility, we let Index do its normal type # inference, _except_ for if if infers from object to bool. idx = Index(keys) if idx.dtype == bool and keys.dtype == object: idx = idx.astype(object) idx.name = index_name result = Series(counts, index=idx, name=name, copy=False) if sort: result = result.sort_values(ascending=ascending) if normalize: result = result / counts.sum() return result # Called once from SparseArray, otherwise could be private def value_counts_arraylike( values: np.ndarray, dropna: bool, mask: npt.NDArray[np.bool_] | None = None ) -> tuple[ArrayLike, npt.NDArray[np.int64]]: """ Parameters ---------- values : np.ndarray dropna : bool mask : np.ndarray[bool] or None, default None Returns ------- uniques : np.ndarray counts : np.ndarray[np.int64] """ original = values values = _ensure_data(values) keys, counts = htable.value_count(values, dropna, mask=mask) if needs_i8_conversion(original.dtype): # datetime, timedelta, or period if dropna: mask = keys != iNaT keys, counts = keys[mask], counts[mask] res_keys = _reconstruct_data(keys, original.dtype, original) return res_keys, counts def duplicated( values: ArrayLike, keep: Literal["first", "last", False] = "first" ) -> npt.NDArray[np.bool_]: """ Return boolean ndarray denoting duplicate values. Parameters ---------- values : nd.array, ExtensionArray or Series Array over which to check for duplicate values. keep : {'first', 'last', False}, default 'first' - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. Returns ------- duplicated : ndarray[bool] """ if hasattr(values, "dtype") and isinstance(values.dtype, BaseMaskedDtype): values = cast("BaseMaskedArray", values) return htable.duplicated(values._data, keep=keep, mask=values._mask) values = _ensure_data(values) return htable.duplicated(values, keep=keep) def mode( values: ArrayLike, dropna: bool = True, mask: npt.NDArray[np.bool_] | None = None ) -> ArrayLike: """ Returns the mode(s) of an array. Parameters ---------- values : array-like Array over which to check for duplicate values. dropna : bool, default True Don't consider counts of NaN/NaT. Returns ------- np.ndarray or ExtensionArray """ values = _ensure_arraylike(values) original = values if needs_i8_conversion(values.dtype): # Got here with ndarray; dispatch to DatetimeArray/TimedeltaArray. values = ensure_wrapped_if_datetimelike(values) values = cast("ExtensionArray", values) return values._mode(dropna=dropna) values = _ensure_data(values) npresult = htable.mode(values, dropna=dropna, mask=mask) try: npresult = np.sort(npresult) except TypeError as err: warnings.warn( f"Unable to sort modes: {err}", stacklevel=find_stack_level(), ) result = _reconstruct_data(npresult, original.dtype, original) return result def rank( values: ArrayLike, axis: AxisInt = 0, method: str = "average", na_option: str = "keep", ascending: bool = True, pct: bool = False, ) -> npt.NDArray[np.float64]: """ Rank the values along a given axis. Parameters ---------- values : np.ndarray or ExtensionArray Array whose values will be ranked. The number of dimensions in this array must not exceed 2. axis : int, default 0 Axis over which to perform rankings. method : {'average', 'min', 'max', 'first', 'dense'}, default 'average' The method by which tiebreaks are broken during the ranking. na_option : {'keep', 'top'}, default 'keep' The method by which NaNs are placed in the ranking. - ``keep``: rank each NaN value with a NaN ranking - ``top``: replace each NaN with either +/- inf so that they there are ranked at the top ascending : bool, default True Whether or not the elements should be ranked in ascending order. pct : bool, default False Whether or not to the display the returned rankings in integer form (e.g. 1, 2, 3) or in percentile form (e.g. 0.333..., 0.666..., 1). """ is_datetimelike = needs_i8_conversion(values.dtype) values = _ensure_data(values) if values.ndim == 1: ranks = algos.rank_1d( values, is_datetimelike=is_datetimelike, ties_method=method, ascending=ascending, na_option=na_option, pct=pct, ) elif values.ndim == 2: ranks = algos.rank_2d( values, axis=axis, is_datetimelike=is_datetimelike, ties_method=method, ascending=ascending, na_option=na_option, pct=pct, ) else: raise TypeError("Array with ndim > 2 are not supported.") return ranks def checked_add_with_arr( arr: npt.NDArray[np.int64], b: int | npt.NDArray[np.int64], arr_mask: npt.NDArray[np.bool_] | None = None, b_mask: npt.NDArray[np.bool_] | None = None, ) -> npt.NDArray[np.int64]: """ Perform array addition that checks for underflow and overflow. Performs the addition of an int64 array and an int64 integer (or array) but checks that they do not result in overflow first. For elements that are indicated to be NaN, whether or not there is overflow for that element is automatically ignored. Parameters ---------- arr : np.ndarray[int64] addend. b : array or scalar addend. arr_mask : np.ndarray[bool] or None, default None array indicating which elements to exclude from checking b_mask : np.ndarray[bool] or None, default None array or scalar indicating which element(s) to exclude from checking Returns ------- sum : An array for elements x + b for each element x in arr if b is a scalar or an array for elements x + y for each element pair (x, y) in (arr, b). Raises ------ OverflowError if any x + y exceeds the maximum or minimum int64 value. """ # For performance reasons, we broadcast 'b' to the new array 'b2' # so that it has the same size as 'arr'. b2 = np.broadcast_to(b, arr.shape) if b_mask is not None: # We do the same broadcasting for b_mask as well. b2_mask = np.broadcast_to(b_mask, arr.shape) else: b2_mask = None # For elements that are NaN, regardless of their value, we should # ignore whether they overflow or not when doing the checked add. if arr_mask is not None and b2_mask is not None: not_nan = np.logical_not(arr_mask | b2_mask) elif arr_mask is not None: not_nan = np.logical_not(arr_mask) elif b_mask is not None: # error: Argument 1 to "__call__" of "_UFunc_Nin1_Nout1" has # incompatible type "Optional[ndarray[Any, dtype[bool_]]]"; # expected "Union[_SupportsArray[dtype[Any]], _NestedSequence # [_SupportsArray[dtype[Any]]], bool, int, float, complex, str # , bytes, _NestedSequence[Union[bool, int, float, complex, str # , bytes]]]" not_nan = np.logical_not(b2_mask) # type: ignore[arg-type] else: not_nan = np.empty(arr.shape, dtype=bool) not_nan.fill(True) # gh-14324: For each element in 'arr' and its corresponding element # in 'b2', we check the sign of the element in 'b2'. If it is positive, # we then check whether its sum with the element in 'arr' exceeds # np.iinfo(np.int64).max. If so, we have an overflow error. If it # it is negative, we then check whether its sum with the element in # 'arr' exceeds np.iinfo(np.int64).min. If so, we have an overflow # error as well. i8max = lib.i8max i8min = iNaT mask1 = b2 > 0 mask2 = b2 < 0 if not mask1.any(): to_raise = ((i8min - b2 > arr) & not_nan).any() elif not mask2.any(): to_raise = ((i8max - b2 < arr) & not_nan).any() else: to_raise = ((i8max - b2[mask1] < arr[mask1]) & not_nan[mask1]).any() or ( (i8min - b2[mask2] > arr[mask2]) & not_nan[mask2] ).any() if to_raise: raise OverflowError("Overflow in int64 addition") result = arr + b if arr_mask is not None or b2_mask is not None: np.putmask(result, ~not_nan, iNaT) return result # ---- # # take # # ---- # def take( arr, indices: TakeIndexer, axis: AxisInt = 0, allow_fill: bool = False, fill_value=None, ): """ Take elements from an array. Parameters ---------- arr : array-like or scalar value Non array-likes (sequences/scalars without a dtype) are coerced to an ndarray. indices : sequence of int or one-dimensional np.ndarray of int Indices to be taken. axis : int, default 0 The axis over which to select values. allow_fill : bool, default False How to handle negative values in `indices`. * False: negative values in `indices` indicate positional indices from the right (the default). This is similar to :func:`numpy.take`. * True: negative values in `indices` indicate missing values. These values are set to `fill_value`. Any other negative values raise a ``ValueError``. fill_value : any, optional Fill value to use for NA-indices when `allow_fill` is True. This may be ``None``, in which case the default NA value for the type (``self.dtype.na_value``) is used. For multi-dimensional `arr`, each *element* is filled with `fill_value`. Returns ------- ndarray or ExtensionArray Same type as the input. Raises ------ IndexError When `indices` is out of bounds for the array. ValueError When the indexer contains negative values other than ``-1`` and `allow_fill` is True. Notes ----- When `allow_fill` is False, `indices` may be whatever dimensionality is accepted by NumPy for `arr`. When `allow_fill` is True, `indices` should be 1-D. See Also -------- numpy.take : Take elements from an array along an axis. Examples -------- >>> import pandas as pd With the default ``allow_fill=False``, negative numbers indicate positional indices from the right. >>> pd.api.extensions.take(np.array([10, 20, 30]), [0, 0, -1]) array([10, 10, 30]) Setting ``allow_fill=True`` will place `fill_value` in those positions. >>> pd.api.extensions.take(np.array([10, 20, 30]), [0, 0, -1], allow_fill=True) array([10., 10., nan]) >>> pd.api.extensions.take(np.array([10, 20, 30]), [0, 0, -1], allow_fill=True, ... fill_value=-10) array([ 10, 10, -10]) """ if not is_array_like(arr): arr = np.asarray(arr) indices = np.asarray(indices, dtype=np.intp) if allow_fill: # Pandas style, -1 means NA validate_indices(indices, arr.shape[axis]) result = take_nd( arr, indices, axis=axis, allow_fill=True, fill_value=fill_value ) else: # NumPy style result = arr.take(indices, axis=axis) return result # ------------ # # searchsorted # # ------------ # def searchsorted( arr: ArrayLike, value: NumpyValueArrayLike | ExtensionArray, side: Literal["left", "right"] = "left", sorter: NumpySorter = None, ) -> npt.NDArray[np.intp] | np.intp: """ Find indices where elements should be inserted to maintain order. Find the indices into a sorted array `arr` (a) such that, if the corresponding elements in `value` were inserted before the indices, the order of `arr` would be preserved. Assuming that `arr` is sorted: ====== ================================ `side` returned index `i` satisfies ====== ================================ left ``arr[i-1] < value <= self[i]`` right ``arr[i-1] <= value < self[i]`` ====== ================================ Parameters ---------- arr: np.ndarray, ExtensionArray, Series Input array. If `sorter` is None, then it must be sorted in ascending order, otherwise `sorter` must be an array of indices that sort it. value : array-like or scalar Values to insert into `arr`. side : {'left', 'right'}, optional If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of `self`). sorter : 1-D array-like, optional Optional array of integer indices that sort array a into ascending order. They are typically the result of argsort. Returns ------- array of ints or int If value is array-like, array of insertion points. If value is scalar, a single integer. See Also -------- numpy.searchsorted : Similar method from NumPy. """ if sorter is not None: sorter = ensure_platform_int(sorter) if ( isinstance(arr, np.ndarray) and is_integer_dtype(arr.dtype) and (is_integer(value) or is_integer_dtype(value)) ): # if `arr` and `value` have different dtypes, `arr` would be # recast by numpy, causing a slow search. # Before searching below, we therefore try to give `value` the # same dtype as `arr`, while guarding against integer overflows. iinfo = np.iinfo(arr.dtype.type) value_arr = np.array([value]) if is_scalar(value) else np.array(value) if (value_arr >= iinfo.min).all() and (value_arr <= iinfo.max).all(): # value within bounds, so no overflow, so can convert value dtype # to dtype of arr dtype = arr.dtype else: dtype = value_arr.dtype if is_scalar(value): # We know that value is int value = cast(int, dtype.type(value)) else: value = pd_array(cast(ArrayLike, value), dtype=dtype) else: # E.g. if `arr` is an array with dtype='datetime64[ns]' # and `value` is a pd.Timestamp, we may need to convert value arr = ensure_wrapped_if_datetimelike(arr) # Argument 1 to "searchsorted" of "ndarray" has incompatible type # "Union[NumpyValueArrayLike, ExtensionArray]"; expected "NumpyValueArrayLike" return arr.searchsorted(value, side=side, sorter=sorter) # type: ignore[arg-type] # ---- # # diff # # ---- # _diff_special = {"float64", "float32", "int64", "int32", "int16", "int8"} def diff(arr, n: int, axis: AxisInt = 0): """ difference of n between self, analogous to s-s.shift(n) Parameters ---------- arr : ndarray or ExtensionArray n : int number of periods axis : {0, 1} axis to shift on stacklevel : int, default 3 The stacklevel for the lost dtype warning. Returns ------- shifted """ n = int(n) na = np.nan dtype = arr.dtype is_bool = is_bool_dtype(dtype) if is_bool: op = operator.xor else: op = operator.sub if isinstance(dtype, PandasDtype): # PandasArray cannot necessarily hold shifted versions of itself. arr = arr.to_numpy() dtype = arr.dtype if not isinstance(dtype, np.dtype): # i.e ExtensionDtype if hasattr(arr, f"__{op.__name__}__"): if axis != 0: raise ValueError(f"cannot diff {type(arr).__name__} on axis={axis}") return op(arr, arr.shift(n)) else: raise TypeError( f"{type(arr).__name__} has no 'diff' method. " "Convert to a suitable dtype prior to calling 'diff'." ) is_timedelta = False if needs_i8_conversion(arr.dtype): dtype = np.int64 arr = arr.view("i8") na = iNaT is_timedelta = True elif is_bool: # We have to cast in order to be able to hold np.nan dtype = np.object_ elif is_integer_dtype(dtype): # We have to cast in order to be able to hold np.nan # int8, int16 are incompatible with float64, # see https://github.com/cython/cython/issues/2646 if arr.dtype.name in ["int8", "int16"]: dtype = np.float32 else: dtype = np.float64 orig_ndim = arr.ndim if orig_ndim == 1: # reshape so we can always use algos.diff_2d arr = arr.reshape(-1, 1) # TODO: require axis == 0 dtype = np.dtype(dtype) out_arr = np.empty(arr.shape, dtype=dtype) na_indexer = [slice(None)] * 2 na_indexer[axis] = slice(None, n) if n >= 0 else slice(n, None) out_arr[tuple(na_indexer)] = na if arr.dtype.name in _diff_special: # TODO: can diff_2d dtype specialization troubles be fixed by defining # out_arr inside diff_2d? algos.diff_2d(arr, out_arr, n, axis, datetimelike=is_timedelta) else: # To keep mypy happy, _res_indexer is a list while res_indexer is # a tuple, ditto for lag_indexer. _res_indexer = [slice(None)] * 2 _res_indexer[axis] = slice(n, None) if n >= 0 else slice(None, n) res_indexer = tuple(_res_indexer) _lag_indexer = [slice(None)] * 2 _lag_indexer[axis] = slice(None, -n) if n > 0 else slice(-n, None) lag_indexer = tuple(_lag_indexer) out_arr[res_indexer] = op(arr[res_indexer], arr[lag_indexer]) if is_timedelta: out_arr = out_arr.view("timedelta64[ns]") if orig_ndim == 1: out_arr = out_arr[:, 0] return out_arr # -------------------------------------------------------------------- # Helper functions # Note: safe_sort is in algorithms.py instead of sorting.py because it is # low-dependency, is used in this module, and used private methods from # this module. def safe_sort( values, codes=None, use_na_sentinel: bool = True, assume_unique: bool = False, verify: bool = True, ) -> AnyArrayLike | tuple[AnyArrayLike, np.ndarray]: """ Sort ``values`` and reorder corresponding ``codes``. ``values`` should be unique if ``codes`` is not None. Safe for use with mixed types (int, str), orders ints before strs. Parameters ---------- values : list-like Sequence; must be unique if ``codes`` is not None. codes : list_like, optional Indices to ``values``. All out of bound indices are treated as "not found" and will be masked with ``-1``. use_na_sentinel : bool, default True If True, the sentinel -1 will be used for NaN values. If False, NaN values will be encoded as non-negative integers and will not drop the NaN from the uniques of the values. assume_unique : bool, default False When True, ``values`` are assumed to be unique, which can speed up the calculation. Ignored when ``codes`` is None. verify : bool, default True Check if codes are out of bound for the values and put out of bound codes equal to ``-1``. If ``verify=False``, it is assumed there are no out of bound codes. Ignored when ``codes`` is None. Returns ------- ordered : AnyArrayLike Sorted ``values`` new_codes : ndarray Reordered ``codes``; returned when ``codes`` is not None. Raises ------ TypeError * If ``values`` is not list-like or if ``codes`` is neither None nor list-like * If ``values`` cannot be sorted ValueError * If ``codes`` is not None and ``values`` contain duplicates. """ if not is_list_like(values): raise TypeError( "Only list-like objects are allowed to be passed to safe_sort as values" ) if not is_array_like(values): # don't convert to string types dtype, _ = infer_dtype_from_array(values) # error: Argument "dtype" to "asarray" has incompatible type "Union[dtype[Any], # ExtensionDtype]"; expected "Union[dtype[Any], None, type, _SupportsDType, str, # Union[Tuple[Any, int], Tuple[Any, Union[int, Sequence[int]]], List[Any], # _DTypeDict, Tuple[Any, Any]]]" values = np.asarray(values, dtype=dtype) # type: ignore[arg-type] sorter = None ordered: AnyArrayLike if ( not is_extension_array_dtype(values) and lib.infer_dtype(values, skipna=False) == "mixed-integer" ): ordered = _sort_mixed(values) else: try: sorter = values.argsort() ordered = values.take(sorter) except TypeError: # Previous sorters failed or were not applicable, try `_sort_mixed` # which would work, but which fails for special case of 1d arrays # with tuples. if values.size and isinstance(values[0], tuple): ordered = _sort_tuples(values) else: ordered = _sort_mixed(values) # codes: if codes is None: return ordered if not is_list_like(codes): raise TypeError( "Only list-like objects or None are allowed to " "be passed to safe_sort as codes" ) codes = ensure_platform_int(np.asarray(codes)) if not assume_unique and not len(unique(values)) == len(values): raise ValueError("values should be unique if codes is not None") if sorter is None: # mixed types hash_klass, values = _get_hashtable_algo(values) t = hash_klass(len(values)) t.map_locations(values) sorter = ensure_platform_int(t.lookup(ordered)) if use_na_sentinel: # take_nd is faster, but only works for na_sentinels of -1 order2 = sorter.argsort() new_codes = take_nd(order2, codes, fill_value=-1) if verify: mask = (codes < -len(values)) | (codes >= len(values)) else: mask = None else: reverse_indexer = np.empty(len(sorter), dtype=np.int_) reverse_indexer.put(sorter, np.arange(len(sorter))) # Out of bound indices will be masked with `-1` next, so we # may deal with them here without performance loss using `mode='wrap'` new_codes = reverse_indexer.take(codes, mode="wrap") if use_na_sentinel: mask = codes == -1 if verify: mask = mask | (codes < -len(values)) | (codes >= len(values)) if use_na_sentinel and mask is not None: np.putmask(new_codes, mask, -1) return ordered, ensure_platform_int(new_codes) def _sort_mixed(values) -> AnyArrayLike: """order ints before strings before nulls in 1d arrays""" str_pos = np.array([isinstance(x, str) for x in values], dtype=bool) null_pos = np.array([isna(x) for x in values], dtype=bool) num_pos = ~str_pos & ~null_pos str_argsort = np.argsort(values[str_pos]) num_argsort = np.argsort(values[num_pos]) # convert boolean arrays to positional indices, then order by underlying values str_locs = str_pos.nonzero()[0].take(str_argsort) num_locs = num_pos.nonzero()[0].take(num_argsort) null_locs = null_pos.nonzero()[0] locs = np.concatenate([num_locs, str_locs, null_locs]) return values.take(locs) def _sort_tuples(values: np.ndarray) -> np.ndarray: """ Convert array of tuples (1d) to array of arrays (2d). We need to keep the columns separately as they contain different types and nans (can't use `np.sort` as it may fail when str and nan are mixed in a column as types cannot be compared). """ from pandas.core.internals.construction import to_arrays from pandas.core.sorting import lexsort_indexer arrays, _ = to_arrays(values, None) indexer = lexsort_indexer(arrays, orders=True) return values[indexer] def union_with_duplicates( lvals: ArrayLike | Index, rvals: ArrayLike | Index ) -> ArrayLike | Index: """ Extracts the union from lvals and rvals with respect to duplicates and nans in both arrays. Parameters ---------- lvals: np.ndarray or ExtensionArray left values which is ordered in front. rvals: np.ndarray or ExtensionArray right values ordered after lvals. Returns ------- np.ndarray or ExtensionArray Containing the unsorted union of both arrays. Notes ----- Caller is responsible for ensuring lvals.dtype == rvals.dtype. """ from pandas import Series l_count = value_counts(lvals, dropna=False) r_count = value_counts(rvals, dropna=False) l_count, r_count = l_count.align(r_count, fill_value=0) final_count = np.maximum(l_count.values, r_count.values) final_count = Series(final_count, index=l_count.index, dtype="int", copy=False) if isinstance(lvals, ABCMultiIndex) and isinstance(rvals, ABCMultiIndex): unique_vals = lvals.append(rvals).unique() else: if isinstance(lvals, ABCIndex): lvals = lvals._values if isinstance(rvals, ABCIndex): rvals = rvals._values unique_vals = unique(concat_compat([lvals, rvals])) unique_vals = ensure_wrapped_if_datetimelike(unique_vals) repeats = final_count.reindex(unique_vals).values return np.repeat(unique_vals, repeats)