import decimal import operator import numpy as np import pytest import pandas as pd import pandas._testing as tm from pandas.api.types import infer_dtype from pandas.tests.extension import base from pandas.tests.extension.decimal.array import ( DecimalArray, DecimalDtype, make_data, to_decimal, ) @pytest.fixture def dtype(): return DecimalDtype() @pytest.fixture def data(): return DecimalArray(make_data()) @pytest.fixture def data_for_twos(): return DecimalArray([decimal.Decimal(2) for _ in range(100)]) @pytest.fixture def data_missing(): return DecimalArray([decimal.Decimal("NaN"), decimal.Decimal(1)]) @pytest.fixture def data_for_sorting(): return DecimalArray( [decimal.Decimal("1"), decimal.Decimal("2"), decimal.Decimal("0")] ) @pytest.fixture def data_missing_for_sorting(): return DecimalArray( [decimal.Decimal("1"), decimal.Decimal("NaN"), decimal.Decimal("0")] ) @pytest.fixture def na_cmp(): return lambda x, y: x.is_nan() and y.is_nan() @pytest.fixture def na_value(): return decimal.Decimal("NaN") @pytest.fixture def data_for_grouping(): b = decimal.Decimal("1.0") a = decimal.Decimal("0.0") c = decimal.Decimal("2.0") na = decimal.Decimal("NaN") return DecimalArray([b, b, na, na, a, a, b, c]) class TestDtype(base.BaseDtypeTests): def test_hashable(self, dtype): pass @pytest.mark.parametrize("skipna", [True, False]) def test_infer_dtype(self, data, data_missing, skipna): # here overriding base test to ensure we fall back to return # "unknown-array" for an EA pandas doesn't know assert infer_dtype(data, skipna=skipna) == "unknown-array" assert infer_dtype(data_missing, skipna=skipna) == "unknown-array" class TestInterface(base.BaseInterfaceTests): pass class TestConstructors(base.BaseConstructorsTests): pass class TestReshaping(base.BaseReshapingTests): pass class TestGetitem(base.BaseGetitemTests): def test_take_na_value_other_decimal(self): arr = DecimalArray([decimal.Decimal("1.0"), decimal.Decimal("2.0")]) result = arr.take([0, -1], allow_fill=True, fill_value=decimal.Decimal("-1.0")) expected = DecimalArray([decimal.Decimal("1.0"), decimal.Decimal("-1.0")]) self.assert_extension_array_equal(result, expected) class TestIndex(base.BaseIndexTests): pass class TestMissing(base.BaseMissingTests): pass class Reduce: def check_reduce(self, s, op_name, skipna): if op_name in ["median", "skew", "kurt", "sem"]: msg = r"decimal does not support the .* operation" with pytest.raises(NotImplementedError, match=msg): getattr(s, op_name)(skipna=skipna) elif op_name == "count": result = getattr(s, op_name)() expected = len(s) - s.isna().sum() tm.assert_almost_equal(result, expected) else: result = getattr(s, op_name)(skipna=skipna) expected = getattr(np.asarray(s), op_name)() tm.assert_almost_equal(result, expected) class TestNumericReduce(Reduce, base.BaseNumericReduceTests): pass class TestBooleanReduce(Reduce, base.BaseBooleanReduceTests): pass class TestMethods(base.BaseMethodsTests): @pytest.mark.parametrize("dropna", [True, False]) def test_value_counts(self, all_data, dropna, request): all_data = all_data[:10] if dropna: other = np.array(all_data[~all_data.isna()]) else: other = all_data vcs = pd.Series(all_data).value_counts(dropna=dropna) vcs_ex = pd.Series(other).value_counts(dropna=dropna) with decimal.localcontext() as ctx: # avoid raising when comparing Decimal("NAN") < Decimal(2) ctx.traps[decimal.InvalidOperation] = False result = vcs.sort_index() expected = vcs_ex.sort_index() tm.assert_series_equal(result, expected) class TestCasting(base.BaseCastingTests): pass class TestGroupby(base.BaseGroupbyTests): pass class TestSetitem(base.BaseSetitemTests): pass class TestPrinting(base.BasePrintingTests): def test_series_repr(self, data): # Overriding this base test to explicitly test that # the custom _formatter is used ser = pd.Series(data) assert data.dtype.name in repr(ser) assert "Decimal: " in repr(ser) @pytest.mark.xfail( reason=( "DecimalArray constructor raises bc _from_sequence wants Decimals, not ints." "Easy to fix, just need to do it." ), raises=TypeError, ) def test_series_constructor_coerce_data_to_extension_dtype_raises(): xpr = ( "Cannot cast data to extension dtype 'decimal'. Pass the " "extension array directly." ) with pytest.raises(ValueError, match=xpr): pd.Series([0, 1, 2], dtype=DecimalDtype()) def test_series_constructor_with_dtype(): arr = DecimalArray([decimal.Decimal("10.0")]) result = pd.Series(arr, dtype=DecimalDtype()) expected = pd.Series(arr) tm.assert_series_equal(result, expected) result = pd.Series(arr, dtype="int64") expected = pd.Series([10]) tm.assert_series_equal(result, expected) def test_dataframe_constructor_with_dtype(): arr = DecimalArray([decimal.Decimal("10.0")]) result = pd.DataFrame({"A": arr}, dtype=DecimalDtype()) expected = pd.DataFrame({"A": arr}) tm.assert_frame_equal(result, expected) arr = DecimalArray([decimal.Decimal("10.0")]) result = pd.DataFrame({"A": arr}, dtype="int64") expected = pd.DataFrame({"A": [10]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("frame", [True, False]) def test_astype_dispatches(frame): # This is a dtype-specific test that ensures Series[decimal].astype # gets all the way through to ExtensionArray.astype # Designing a reliable smoke test that works for arbitrary data types # is difficult. data = pd.Series(DecimalArray([decimal.Decimal(2)]), name="a") ctx = decimal.Context() ctx.prec = 5 if frame: data = data.to_frame() result = data.astype(DecimalDtype(ctx)) if frame: result = result["a"] assert result.dtype.context.prec == ctx.prec class TestArithmeticOps(base.BaseArithmeticOpsTests): def check_opname(self, s, op_name, other, exc=None): super().check_opname(s, op_name, other, exc=None) def test_arith_series_with_array(self, data, all_arithmetic_operators): op_name = all_arithmetic_operators s = pd.Series(data) context = decimal.getcontext() divbyzerotrap = context.traps[decimal.DivisionByZero] invalidoptrap = context.traps[decimal.InvalidOperation] context.traps[decimal.DivisionByZero] = 0 context.traps[decimal.InvalidOperation] = 0 # Decimal supports ops with int, but not float other = pd.Series([int(d * 100) for d in data]) self.check_opname(s, op_name, other) if "mod" not in op_name: self.check_opname(s, op_name, s * 2) self.check_opname(s, op_name, 0) self.check_opname(s, op_name, 5) context.traps[decimal.DivisionByZero] = divbyzerotrap context.traps[decimal.InvalidOperation] = invalidoptrap def _check_divmod_op(self, s, op, other, exc=NotImplementedError): # We implement divmod super()._check_divmod_op(s, op, other, exc=None) class TestComparisonOps(base.BaseComparisonOpsTests): def test_compare_scalar(self, data, comparison_op): s = pd.Series(data) self._compare_other(s, data, comparison_op, 0.5) def test_compare_array(self, data, comparison_op): s = pd.Series(data) alter = np.random.choice([-1, 0, 1], len(data)) # Randomly double, halve or keep same value other = pd.Series(data) * [decimal.Decimal(pow(2.0, i)) for i in alter] self._compare_other(s, data, comparison_op, other) class DecimalArrayWithoutFromSequence(DecimalArray): """Helper class for testing error handling in _from_sequence.""" @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): raise KeyError("For the test") class DecimalArrayWithoutCoercion(DecimalArrayWithoutFromSequence): @classmethod def _create_arithmetic_method(cls, op): return cls._create_method(op, coerce_to_dtype=False) DecimalArrayWithoutCoercion._add_arithmetic_ops() def test_combine_from_sequence_raises(monkeypatch): # https://github.com/pandas-dev/pandas/issues/22850 cls = DecimalArrayWithoutFromSequence @classmethod def construct_array_type(cls): return DecimalArrayWithoutFromSequence monkeypatch.setattr(DecimalDtype, "construct_array_type", construct_array_type) arr = cls([decimal.Decimal("1.0"), decimal.Decimal("2.0")]) ser = pd.Series(arr) result = ser.combine(ser, operator.add) # note: object dtype expected = pd.Series( [decimal.Decimal("2.0"), decimal.Decimal("4.0")], dtype="object" ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "class_", [DecimalArrayWithoutFromSequence, DecimalArrayWithoutCoercion] ) def test_scalar_ops_from_sequence_raises(class_): # op(EA, EA) should return an EA, or an ndarray if it's not possible # to return an EA with the return values. arr = class_([decimal.Decimal("1.0"), decimal.Decimal("2.0")]) result = arr + arr expected = np.array( [decimal.Decimal("2.0"), decimal.Decimal("4.0")], dtype="object" ) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "reverse, expected_div, expected_mod", [(False, [0, 1, 1, 2], [1, 0, 1, 0]), (True, [2, 1, 0, 0], [0, 0, 2, 2])], ) def test_divmod_array(reverse, expected_div, expected_mod): # https://github.com/pandas-dev/pandas/issues/22930 arr = to_decimal([1, 2, 3, 4]) if reverse: div, mod = divmod(2, arr) else: div, mod = divmod(arr, 2) expected_div = to_decimal(expected_div) expected_mod = to_decimal(expected_mod) tm.assert_extension_array_equal(div, expected_div) tm.assert_extension_array_equal(mod, expected_mod) def test_ufunc_fallback(data): a = data[:5] s = pd.Series(a, index=range(3, 8)) result = np.abs(s) expected = pd.Series(np.abs(a), index=range(3, 8)) tm.assert_series_equal(result, expected) def test_array_ufunc(): a = to_decimal([1, 2, 3]) result = np.exp(a) expected = to_decimal(np.exp(a._data)) tm.assert_extension_array_equal(result, expected) def test_array_ufunc_series(): a = to_decimal([1, 2, 3]) s = pd.Series(a) result = np.exp(s) expected = pd.Series(to_decimal(np.exp(a._data))) tm.assert_series_equal(result, expected) def test_array_ufunc_series_scalar_other(): # check _HANDLED_TYPES a = to_decimal([1, 2, 3]) s = pd.Series(a) result = np.add(s, decimal.Decimal(1)) expected = pd.Series(np.add(a, decimal.Decimal(1))) tm.assert_series_equal(result, expected) def test_array_ufunc_series_defer(): a = to_decimal([1, 2, 3]) s = pd.Series(a) expected = pd.Series(to_decimal([2, 4, 6])) r1 = np.add(s, a) r2 = np.add(a, s) tm.assert_series_equal(r1, expected) tm.assert_series_equal(r2, expected) def test_groupby_agg(): # Ensure that the result of agg is inferred to be decimal dtype # https://github.com/pandas-dev/pandas/issues/29141 data = make_data()[:5] df = pd.DataFrame( {"id1": [0, 0, 0, 1, 1], "id2": [0, 1, 0, 1, 1], "decimals": DecimalArray(data)} ) # single key, selected column expected = pd.Series(to_decimal([data[0], data[3]])) result = df.groupby("id1")["decimals"].agg(lambda x: x.iloc[0]) tm.assert_series_equal(result, expected, check_names=False) result = df["decimals"].groupby(df["id1"]).agg(lambda x: x.iloc[0]) tm.assert_series_equal(result, expected, check_names=False) # multiple keys, selected column expected = pd.Series( to_decimal([data[0], data[1], data[3]]), index=pd.MultiIndex.from_tuples([(0, 0), (0, 1), (1, 1)]), ) result = df.groupby(["id1", "id2"])["decimals"].agg(lambda x: x.iloc[0]) tm.assert_series_equal(result, expected, check_names=False) result = df["decimals"].groupby([df["id1"], df["id2"]]).agg(lambda x: x.iloc[0]) tm.assert_series_equal(result, expected, check_names=False) # multiple columns expected = pd.DataFrame({"id2": [0, 1], "decimals": to_decimal([data[0], data[3]])}) result = df.groupby("id1").agg(lambda x: x.iloc[0]) tm.assert_frame_equal(result, expected, check_names=False) def test_groupby_agg_ea_method(monkeypatch): # Ensure that the result of agg is inferred to be decimal dtype # https://github.com/pandas-dev/pandas/issues/29141 def DecimalArray__my_sum(self): return np.sum(np.array(self)) monkeypatch.setattr(DecimalArray, "my_sum", DecimalArray__my_sum, raising=False) data = make_data()[:5] df = pd.DataFrame({"id": [0, 0, 0, 1, 1], "decimals": DecimalArray(data)}) expected = pd.Series(to_decimal([data[0] + data[1] + data[2], data[3] + data[4]])) result = df.groupby("id")["decimals"].agg(lambda x: x.values.my_sum()) tm.assert_series_equal(result, expected, check_names=False) s = pd.Series(DecimalArray(data)) grouper = np.array([0, 0, 0, 1, 1], dtype=np.int64) result = s.groupby(grouper).agg(lambda x: x.values.my_sum()) tm.assert_series_equal(result, expected, check_names=False) def test_indexing_no_materialize(monkeypatch): # See https://github.com/pandas-dev/pandas/issues/29708 # Ensure that indexing operations do not materialize (convert to a numpy # array) the ExtensionArray unnecessary def DecimalArray__array__(self, dtype=None): raise Exception("tried to convert a DecimalArray to a numpy array") monkeypatch.setattr(DecimalArray, "__array__", DecimalArray__array__, raising=False) data = make_data() s = pd.Series(DecimalArray(data)) df = pd.DataFrame({"a": s, "b": range(len(s))}) # ensure the following operations do not raise an error s[s > 0.5] df[s > 0.5] s.at[0] df.at[0, "a"] def test_to_numpy_keyword(): # test the extra keyword values = [decimal.Decimal("1.1111"), decimal.Decimal("2.2222")] expected = np.array( [decimal.Decimal("1.11"), decimal.Decimal("2.22")], dtype="object" ) a = pd.array(values, dtype="decimal") result = a.to_numpy(decimals=2) tm.assert_numpy_array_equal(result, expected) result = pd.Series(a).to_numpy(decimals=2) tm.assert_numpy_array_equal(result, expected) def test_array_copy_on_write(using_copy_on_write): df = pd.DataFrame({"a": [decimal.Decimal(2), decimal.Decimal(3)]}, dtype="object") df2 = df.astype(DecimalDtype()) df.iloc[0, 0] = 0 if using_copy_on_write: expected = pd.DataFrame( {"a": [decimal.Decimal(2), decimal.Decimal(3)]}, dtype=DecimalDtype() ) tm.assert_equal(df2.values, expected.values)