# Authors: Travis Oliphant, Matthew Brett """ Base classes for MATLAB file stream reading. MATLAB is a registered trademark of the Mathworks inc. """ import operator import functools import numpy as np from scipy._lib import doccer from . import _byteordercodes as boc __all__ = [ 'MatFileReader', 'MatReadError', 'MatReadWarning', 'MatVarReader', 'MatWriteError', 'arr_dtype_number', 'arr_to_chars', 'convert_dtypes', 'doc_dict', 'docfiller', 'get_matfile_version', 'matdims', 'read_dtype' ] class MatReadError(Exception): """Exception indicating a read issue.""" class MatWriteError(Exception): """Exception indicating a write issue.""" class MatReadWarning(UserWarning): """Warning class for read issues.""" doc_dict = \ {'file_arg': '''file_name : str Name of the mat file (do not need .mat extension if appendmat==True) Can also pass open file-like object.''', 'append_arg': '''appendmat : bool, optional True to append the .mat extension to the end of the given filename, if not already present. Default is True.''', 'load_args': '''byte_order : str or None, optional None by default, implying byte order guessed from mat file. Otherwise can be one of ('native', '=', 'little', '<', 'BIG', '>'). mat_dtype : bool, optional If True, return arrays in same dtype as would be loaded into MATLAB (instead of the dtype with which they are saved). squeeze_me : bool, optional Whether to squeeze unit matrix dimensions or not. chars_as_strings : bool, optional Whether to convert char arrays to string arrays. matlab_compatible : bool, optional Returns matrices as would be loaded by MATLAB (implies squeeze_me=False, chars_as_strings=False, mat_dtype=True, struct_as_record=True).''', 'struct_arg': '''struct_as_record : bool, optional Whether to load MATLAB structs as NumPy record arrays, or as old-style NumPy arrays with dtype=object. Setting this flag to False replicates the behavior of SciPy version 0.7.x (returning numpy object arrays). The default setting is True, because it allows easier round-trip load and save of MATLAB files.''', 'matstream_arg': '''mat_stream : file-like Object with file API, open for reading.''', 'long_fields': '''long_field_names : bool, optional * False - maximum field name length in a structure is 31 characters which is the documented maximum length. This is the default. * True - maximum field name length in a structure is 63 characters which works for MATLAB 7.6''', 'do_compression': '''do_compression : bool, optional Whether to compress matrices on write. Default is False.''', 'oned_as': '''oned_as : {'row', 'column'}, optional If 'column', write 1-D NumPy arrays as column vectors. If 'row', write 1D NumPy arrays as row vectors.''', 'unicode_strings': '''unicode_strings : bool, optional If True, write strings as Unicode, else MATLAB usual encoding.'''} docfiller = doccer.filldoc(doc_dict) ''' Note on architecture ====================== There are three sets of parameters relevant for reading files. The first are *file read parameters* - containing options that are common for reading the whole file, and therefore every variable within that file. At the moment these are: * mat_stream * dtypes (derived from byte code) * byte_order * chars_as_strings * squeeze_me * struct_as_record (MATLAB 5 files) * class_dtypes (derived from order code, MATLAB 5 files) * codecs (MATLAB 5 files) * uint16_codec (MATLAB 5 files) Another set of parameters are those that apply only to the current variable being read - the *header*: * header related variables (different for v4 and v5 mat files) * is_complex * mclass * var_stream With the header, we need ``next_position`` to tell us where the next variable in the stream is. Then, for each element in a matrix, there can be *element read parameters*. An element is, for example, one element in a MATLAB cell array. At the moment, these are: * mat_dtype The file-reading object contains the *file read parameters*. The *header* is passed around as a data object, or may be read and discarded in a single function. The *element read parameters* - the mat_dtype in this instance, is passed into a general post-processing function - see ``mio_utils`` for details. ''' def convert_dtypes(dtype_template, order_code): ''' Convert dtypes in mapping to given order Parameters ---------- dtype_template : mapping mapping with values returning numpy dtype from ``np.dtype(val)`` order_code : str an order code suitable for using in ``dtype.newbyteorder()`` Returns ------- dtypes : mapping mapping where values have been replaced by ``np.dtype(val).newbyteorder(order_code)`` ''' dtypes = dtype_template.copy() for k in dtypes: dtypes[k] = np.dtype(dtypes[k]).newbyteorder(order_code) return dtypes def read_dtype(mat_stream, a_dtype): """ Generic get of byte stream data of known type Parameters ---------- mat_stream : file_like object MATLAB (tm) mat file stream a_dtype : dtype dtype of array to read. `a_dtype` is assumed to be correct endianness. Returns ------- arr : ndarray Array of dtype `a_dtype` read from stream. """ num_bytes = a_dtype.itemsize arr = np.ndarray(shape=(), dtype=a_dtype, buffer=mat_stream.read(num_bytes), order='F') return arr def matfile_version(file_name, *, appendmat=True): """ Return major, minor tuple depending on apparent mat file type Where: #. 0,x -> version 4 format mat files #. 1,x -> version 5 format mat files #. 2,x -> version 7.3 format mat files (HDF format) Parameters ---------- file_name : str Name of the mat file (do not need .mat extension if appendmat==True). Can also pass open file-like object. appendmat : bool, optional True to append the .mat extension to the end of the given filename, if not already present. Default is True. Returns ------- major_version : {0, 1, 2} major MATLAB File format version minor_version : int minor MATLAB file format version Raises ------ MatReadError If the file is empty. ValueError The matfile version is unknown. Notes ----- Has the side effect of setting the file read pointer to 0 """ from ._mio import _open_file_context with _open_file_context(file_name, appendmat=appendmat) as fileobj: return _get_matfile_version(fileobj) get_matfile_version = matfile_version def _get_matfile_version(fileobj): # Mat4 files have a zero somewhere in first 4 bytes fileobj.seek(0) mopt_bytes = fileobj.read(4) if len(mopt_bytes) == 0: raise MatReadError("Mat file appears to be empty") mopt_ints = np.ndarray(shape=(4,), dtype=np.uint8, buffer=mopt_bytes) if 0 in mopt_ints: fileobj.seek(0) return (0,0) # For 5 format or 7.3 format we need to read an integer in the # header. Bytes 124 through 128 contain a version integer and an # endian test string fileobj.seek(124) tst_str = fileobj.read(4) fileobj.seek(0) maj_ind = int(tst_str[2] == b'I'[0]) maj_val = int(tst_str[maj_ind]) min_val = int(tst_str[1 - maj_ind]) ret = (maj_val, min_val) if maj_val in (1, 2): return ret raise ValueError('Unknown mat file type, version %s, %s' % ret) def matdims(arr, oned_as='column'): """ Determine equivalent MATLAB dimensions for given array Parameters ---------- arr : ndarray Input array oned_as : {'column', 'row'}, optional Whether 1-D arrays are returned as MATLAB row or column matrices. Default is 'column'. Returns ------- dims : tuple Shape tuple, in the form MATLAB expects it. Notes ----- We had to decide what shape a 1 dimensional array would be by default. ``np.atleast_2d`` thinks it is a row vector. The default for a vector in MATLAB (e.g., ``>> 1:12``) is a row vector. Versions of scipy up to and including 0.11 resulted (accidentally) in 1-D arrays being read as column vectors. For the moment, we maintain the same tradition here. Examples -------- >>> matdims(np.array(1)) # NumPy scalar (1, 1) >>> matdims(np.array([1])) # 1-D array, 1 element (1, 1) >>> matdims(np.array([1,2])) # 1-D array, 2 elements (2, 1) >>> matdims(np.array([[2],[3]])) # 2-D array, column vector (2, 1) >>> matdims(np.array([[2,3]])) # 2-D array, row vector (1, 2) >>> matdims(np.array([[[2,3]]])) # 3-D array, rowish vector (1, 1, 2) >>> matdims(np.array([])) # empty 1-D array (0, 0) >>> matdims(np.array([[]])) # empty 2-D array (0, 0) >>> matdims(np.array([[[]]])) # empty 3-D array (0, 0, 0) Optional argument flips 1-D shape behavior. >>> matdims(np.array([1,2]), 'row') # 1-D array, 2 elements (1, 2) The argument has to make sense though >>> matdims(np.array([1,2]), 'bizarre') Traceback (most recent call last): ... ValueError: 1-D option "bizarre" is strange """ shape = arr.shape if shape == (): # scalar return (1, 1) if len(shape) == 1: # 1D if shape[0] == 0: return (0, 0) elif oned_as == 'column': return shape + (1,) elif oned_as == 'row': return (1,) + shape else: raise ValueError('1-D option "%s" is strange' % oned_as) return shape class MatVarReader: ''' Abstract class defining required interface for var readers''' def __init__(self, file_reader): pass def read_header(self): ''' Returns header ''' pass def array_from_header(self, header): ''' Reads array given header ''' pass class MatFileReader: """ Base object for reading mat files To make this class functional, you will need to override the following methods: matrix_getter_factory - gives object to fetch next matrix from stream guess_byte_order - guesses file byte order from file """ @docfiller def __init__(self, mat_stream, byte_order=None, mat_dtype=False, squeeze_me=False, chars_as_strings=True, matlab_compatible=False, struct_as_record=True, verify_compressed_data_integrity=True, simplify_cells=False): ''' Initializer for mat file reader mat_stream : file-like object with file API, open for reading %(load_args)s ''' # Initialize stream self.mat_stream = mat_stream self.dtypes = {} if not byte_order: byte_order = self.guess_byte_order() else: byte_order = boc.to_numpy_code(byte_order) self.byte_order = byte_order self.struct_as_record = struct_as_record if matlab_compatible: self.set_matlab_compatible() else: self.squeeze_me = squeeze_me self.chars_as_strings = chars_as_strings self.mat_dtype = mat_dtype self.verify_compressed_data_integrity = verify_compressed_data_integrity self.simplify_cells = simplify_cells if simplify_cells: self.squeeze_me = True self.struct_as_record = False def set_matlab_compatible(self): ''' Sets options to return arrays as MATLAB loads them ''' self.mat_dtype = True self.squeeze_me = False self.chars_as_strings = False def guess_byte_order(self): ''' As we do not know what file type we have, assume native ''' return boc.native_code def end_of_stream(self): b = self.mat_stream.read(1) curpos = self.mat_stream.tell() self.mat_stream.seek(curpos-1) return len(b) == 0 def arr_dtype_number(arr, num): ''' Return dtype for given number of items per element''' return np.dtype(arr.dtype.str[:2] + str(num)) def arr_to_chars(arr): ''' Convert string array to char array ''' dims = list(arr.shape) if not dims: dims = [1] dims.append(int(arr.dtype.str[2:])) arr = np.ndarray(shape=dims, dtype=arr_dtype_number(arr, 1), buffer=arr) empties = [arr == np.array('', dtype=arr.dtype)] if not np.any(empties): return arr arr = arr.copy() arr[tuple(empties)] = ' ' return arr