import sys import numpy from numpy.testing import (assert_, assert_equal, assert_array_equal, assert_array_almost_equal, assert_allclose, suppress_warnings) import pytest from pytest import raises as assert_raises import scipy.ndimage as ndimage from . import types eps = 1e-12 ndimage_to_numpy_mode = { 'mirror': 'reflect', 'reflect': 'symmetric', 'grid-mirror': 'symmetric', 'grid-wrap': 'wrap', 'nearest': 'edge', 'grid-constant': 'constant', } class TestNdimageInterpolation: @pytest.mark.parametrize( 'mode, expected_value', [('nearest', [1.5, 2.5, 3.5, 4, 4, 4, 4]), ('wrap', [1.5, 2.5, 3.5, 1.5, 2.5, 3.5, 1.5]), ('grid-wrap', [1.5, 2.5, 3.5, 2.5, 1.5, 2.5, 3.5]), ('mirror', [1.5, 2.5, 3.5, 3.5, 2.5, 1.5, 1.5]), ('reflect', [1.5, 2.5, 3.5, 4, 3.5, 2.5, 1.5]), ('constant', [1.5, 2.5, 3.5, -1, -1, -1, -1]), ('grid-constant', [1.5, 2.5, 3.5, 1.5, -1, -1, -1])] ) def test_boundaries(self, mode, expected_value): def shift(x): return (x[0] + 0.5,) data = numpy.array([1, 2, 3, 4.]) assert_array_equal( expected_value, ndimage.geometric_transform(data, shift, cval=-1, mode=mode, output_shape=(7,), order=1)) @pytest.mark.parametrize( 'mode, expected_value', [('nearest', [1, 1, 2, 3]), ('wrap', [3, 1, 2, 3]), ('grid-wrap', [4, 1, 2, 3]), ('mirror', [2, 1, 2, 3]), ('reflect', [1, 1, 2, 3]), ('constant', [-1, 1, 2, 3]), ('grid-constant', [-1, 1, 2, 3])] ) def test_boundaries2(self, mode, expected_value): def shift(x): return (x[0] - 0.9,) data = numpy.array([1, 2, 3, 4]) assert_array_equal( expected_value, ndimage.geometric_transform(data, shift, cval=-1, mode=mode, output_shape=(4,))) @pytest.mark.parametrize('mode', ['mirror', 'reflect', 'grid-mirror', 'grid-wrap', 'grid-constant', 'nearest']) @pytest.mark.parametrize('order', range(6)) def test_boundary_spline_accuracy(self, mode, order): """Tests based on examples from gh-2640""" data = numpy.arange(-6, 7, dtype=float) x = numpy.linspace(-8, 15, num=1000) y = ndimage.map_coordinates(data, [x], order=order, mode=mode) # compute expected value using explicit padding via numpy.pad npad = 32 pad_mode = ndimage_to_numpy_mode.get(mode) padded = numpy.pad(data, npad, mode=pad_mode) expected = ndimage.map_coordinates(padded, [npad + x], order=order, mode=mode) atol = 1e-5 if mode == 'grid-constant' else 1e-12 assert_allclose(y, expected, rtol=1e-7, atol=atol) @pytest.mark.parametrize('order', range(2, 6)) @pytest.mark.parametrize('dtype', types) def test_spline01(self, dtype, order): data = numpy.ones([], dtype) out = ndimage.spline_filter(data, order=order) assert_array_almost_equal(out, 1) @pytest.mark.parametrize('order', range(2, 6)) @pytest.mark.parametrize('dtype', types) def test_spline02(self, dtype, order): data = numpy.array([1], dtype) out = ndimage.spline_filter(data, order=order) assert_array_almost_equal(out, [1]) @pytest.mark.parametrize('order', range(2, 6)) @pytest.mark.parametrize('dtype', types) def test_spline03(self, dtype, order): data = numpy.ones([], dtype) out = ndimage.spline_filter(data, order, output=dtype) assert_array_almost_equal(out, 1) @pytest.mark.parametrize('order', range(2, 6)) @pytest.mark.parametrize('dtype', types) def test_spline04(self, dtype, order): data = numpy.ones([4], dtype) out = ndimage.spline_filter(data, order) assert_array_almost_equal(out, [1, 1, 1, 1]) @pytest.mark.parametrize('order', range(2, 6)) @pytest.mark.parametrize('dtype', types) def test_spline05(self, dtype, order): data = numpy.ones([4, 4], dtype) out = ndimage.spline_filter(data, order=order) assert_array_almost_equal(out, [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]) @pytest.mark.parametrize('order', range(0, 6)) def test_geometric_transform01(self, order): data = numpy.array([1]) def mapping(x): return x out = ndimage.geometric_transform(data, mapping, data.shape, order=order) assert_array_almost_equal(out, [1]) @pytest.mark.parametrize('order', range(0, 6)) def test_geometric_transform02(self, order): data = numpy.ones([4]) def mapping(x): return x out = ndimage.geometric_transform(data, mapping, data.shape, order=order) assert_array_almost_equal(out, [1, 1, 1, 1]) @pytest.mark.parametrize('order', range(0, 6)) def test_geometric_transform03(self, order): data = numpy.ones([4]) def mapping(x): return (x[0] - 1,) out = ndimage.geometric_transform(data, mapping, data.shape, order=order) assert_array_almost_equal(out, [0, 1, 1, 1]) @pytest.mark.parametrize('order', range(0, 6)) def test_geometric_transform04(self, order): data = numpy.array([4, 1, 3, 2]) def mapping(x): return (x[0] - 1,) out = ndimage.geometric_transform(data, mapping, data.shape, order=order) assert_array_almost_equal(out, [0, 4, 1, 3]) @pytest.mark.parametrize('order', range(0, 6)) @pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128]) def test_geometric_transform05(self, order, dtype): data = numpy.array([[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], dtype=dtype) expected = numpy.array([[0, 1, 1, 1], [0, 1, 1, 1], [0, 1, 1, 1]], dtype=dtype) if data.dtype.kind == 'c': data -= 1j * data expected -= 1j * expected def mapping(x): return (x[0], x[1] - 1) out = ndimage.geometric_transform(data, mapping, data.shape, order=order) assert_array_almost_equal(out, expected) @pytest.mark.parametrize('order', range(0, 6)) def test_geometric_transform06(self, order): data = numpy.array([[4, 1, 3, 2], [7, 6, 8, 5], [3, 5, 3, 6]]) def mapping(x): return (x[0], x[1] - 1) out = ndimage.geometric_transform(data, mapping, data.shape, order=order) assert_array_almost_equal(out, [[0, 4, 1, 3], [0, 7, 6, 8], [0, 3, 5, 3]]) @pytest.mark.parametrize('order', range(0, 6)) def test_geometric_transform07(self, order): data = numpy.array([[4, 1, 3, 2], [7, 6, 8, 5], [3, 5, 3, 6]]) def mapping(x): return (x[0] - 1, x[1]) out = ndimage.geometric_transform(data, mapping, data.shape, order=order) assert_array_almost_equal(out, [[0, 0, 0, 0], [4, 1, 3, 2], [7, 6, 8, 5]]) @pytest.mark.parametrize('order', range(0, 6)) def test_geometric_transform08(self, order): data = numpy.array([[4, 1, 3, 2], [7, 6, 8, 5], [3, 5, 3, 6]]) def mapping(x): return (x[0] - 1, x[1] - 1) out = ndimage.geometric_transform(data, mapping, data.shape, order=order) assert_array_almost_equal(out, [[0, 0, 0, 0], [0, 4, 1, 3], [0, 7, 6, 8]]) @pytest.mark.parametrize('order', range(0, 6)) def test_geometric_transform10(self, order): data = numpy.array([[4, 1, 3, 2], [7, 6, 8, 5], [3, 5, 3, 6]]) def mapping(x): return (x[0] - 1, x[1] - 1) if (order > 1): filtered = ndimage.spline_filter(data, order=order) else: filtered = data out = ndimage.geometric_transform(filtered, mapping, data.shape, order=order, prefilter=False) assert_array_almost_equal(out, [[0, 0, 0, 0], [0, 4, 1, 3], [0, 7, 6, 8]]) @pytest.mark.parametrize('order', range(0, 6)) def test_geometric_transform13(self, order): data = numpy.ones([2], numpy.float64) def mapping(x): return (x[0] // 2,) out = ndimage.geometric_transform(data, mapping, [4], order=order) assert_array_almost_equal(out, [1, 1, 1, 1]) @pytest.mark.parametrize('order', range(0, 6)) def test_geometric_transform14(self, order): data = [1, 5, 2, 6, 3, 7, 4, 4] def mapping(x): return (2 * x[0],) out = ndimage.geometric_transform(data, mapping, [4], order=order) assert_array_almost_equal(out, [1, 2, 3, 4]) @pytest.mark.parametrize('order', range(0, 6)) def test_geometric_transform15(self, order): data = [1, 2, 3, 4] def mapping(x): return (x[0] / 2,) out = ndimage.geometric_transform(data, mapping, [8], order=order) assert_array_almost_equal(out[::2], [1, 2, 3, 4]) @pytest.mark.parametrize('order', range(0, 6)) def test_geometric_transform16(self, order): data = [[1, 2, 3, 4], [5, 6, 7, 8], [9.0, 10, 11, 12]] def mapping(x): return (x[0], x[1] * 2) out = ndimage.geometric_transform(data, mapping, (3, 2), order=order) assert_array_almost_equal(out, [[1, 3], [5, 7], [9, 11]]) @pytest.mark.parametrize('order', range(0, 6)) def test_geometric_transform17(self, order): data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] def mapping(x): return (x[0] * 2, x[1]) out = ndimage.geometric_transform(data, mapping, (1, 4), order=order) assert_array_almost_equal(out, [[1, 2, 3, 4]]) @pytest.mark.parametrize('order', range(0, 6)) def test_geometric_transform18(self, order): data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] def mapping(x): return (x[0] * 2, x[1] * 2) out = ndimage.geometric_transform(data, mapping, (1, 2), order=order) assert_array_almost_equal(out, [[1, 3]]) @pytest.mark.parametrize('order', range(0, 6)) def test_geometric_transform19(self, order): data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] def mapping(x): return (x[0], x[1] / 2) out = ndimage.geometric_transform(data, mapping, (3, 8), order=order) assert_array_almost_equal(out[..., ::2], data) @pytest.mark.parametrize('order', range(0, 6)) def test_geometric_transform20(self, order): data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] def mapping(x): return (x[0] / 2, x[1]) out = ndimage.geometric_transform(data, mapping, (6, 4), order=order) assert_array_almost_equal(out[::2, ...], data) @pytest.mark.parametrize('order', range(0, 6)) def test_geometric_transform21(self, order): data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] def mapping(x): return (x[0] / 2, x[1] / 2) out = ndimage.geometric_transform(data, mapping, (6, 8), order=order) assert_array_almost_equal(out[::2, ::2], data) @pytest.mark.parametrize('order', range(0, 6)) def test_geometric_transform22(self, order): data = numpy.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], numpy.float64) def mapping1(x): return (x[0] / 2, x[1] / 2) def mapping2(x): return (x[0] * 2, x[1] * 2) out = ndimage.geometric_transform(data, mapping1, (6, 8), order=order) out = ndimage.geometric_transform(out, mapping2, (3, 4), order=order) assert_array_almost_equal(out, data) @pytest.mark.parametrize('order', range(0, 6)) def test_geometric_transform23(self, order): data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] def mapping(x): return (1, x[0] * 2) out = ndimage.geometric_transform(data, mapping, (2,), order=order) out = out.astype(numpy.int32) assert_array_almost_equal(out, [5, 7]) @pytest.mark.parametrize('order', range(0, 6)) def test_geometric_transform24(self, order): data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] def mapping(x, a, b): return (a, x[0] * b) out = ndimage.geometric_transform( data, mapping, (2,), order=order, extra_arguments=(1,), extra_keywords={'b': 2}) assert_array_almost_equal(out, [5, 7]) def test_geometric_transform_grid_constant_order1(self): # verify interpolation outside the original bounds x = numpy.array([[1, 2, 3], [4, 5, 6]], dtype=float) def mapping(x): return (x[0] - 0.5), (x[1] - 0.5) expected_result = numpy.array([[0.25, 0.75, 1.25], [1.25, 3.00, 4.00]]) assert_array_almost_equal( ndimage.geometric_transform(x, mapping, mode='grid-constant', order=1), expected_result, ) @pytest.mark.parametrize('mode', ['grid-constant', 'grid-wrap', 'nearest', 'mirror', 'reflect']) @pytest.mark.parametrize('order', range(6)) def test_geometric_transform_vs_padded(self, order, mode): x = numpy.arange(144, dtype=float).reshape(12, 12) def mapping(x): return (x[0] - 0.4), (x[1] + 2.3) # Manually pad and then extract center after the transform to get the # expected result. npad = 24 pad_mode = ndimage_to_numpy_mode.get(mode) xp = numpy.pad(x, npad, mode=pad_mode) center_slice = tuple([slice(npad, -npad)] * x.ndim) expected_result = ndimage.geometric_transform( xp, mapping, mode=mode, order=order)[center_slice] assert_allclose( ndimage.geometric_transform(x, mapping, mode=mode, order=order), expected_result, rtol=1e-7, ) def test_geometric_transform_endianness_with_output_parameter(self): # geometric transform given output ndarray or dtype with # non-native endianness. see issue #4127 data = numpy.array([1]) def mapping(x): return x for out in [data.dtype, data.dtype.newbyteorder(), numpy.empty_like(data), numpy.empty_like(data).astype(data.dtype.newbyteorder())]: returned = ndimage.geometric_transform(data, mapping, data.shape, output=out) result = out if returned is None else returned assert_array_almost_equal(result, [1]) def test_geometric_transform_with_string_output(self): data = numpy.array([1]) def mapping(x): return x out = ndimage.geometric_transform(data, mapping, output='f') assert_(out.dtype is numpy.dtype('f')) assert_array_almost_equal(out, [1]) @pytest.mark.parametrize('order', range(0, 6)) @pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128]) def test_map_coordinates01(self, order, dtype): data = numpy.array([[4, 1, 3, 2], [7, 6, 8, 5], [3, 5, 3, 6]]) expected = numpy.array([[0, 0, 0, 0], [0, 4, 1, 3], [0, 7, 6, 8]]) if data.dtype.kind == 'c': data = data - 1j * data expected = expected - 1j * expected idx = numpy.indices(data.shape) idx -= 1 out = ndimage.map_coordinates(data, idx, order=order) assert_array_almost_equal(out, expected) @pytest.mark.parametrize('order', range(0, 6)) def test_map_coordinates02(self, order): data = numpy.array([[4, 1, 3, 2], [7, 6, 8, 5], [3, 5, 3, 6]]) idx = numpy.indices(data.shape, numpy.float64) idx -= 0.5 out1 = ndimage.shift(data, 0.5, order=order) out2 = ndimage.map_coordinates(data, idx, order=order) assert_array_almost_equal(out1, out2) def test_map_coordinates03(self): data = numpy.array([[4, 1, 3, 2], [7, 6, 8, 5], [3, 5, 3, 6]], order='F') idx = numpy.indices(data.shape) - 1 out = ndimage.map_coordinates(data, idx) assert_array_almost_equal(out, [[0, 0, 0, 0], [0, 4, 1, 3], [0, 7, 6, 8]]) assert_array_almost_equal(out, ndimage.shift(data, (1, 1))) idx = numpy.indices(data[::2].shape) - 1 out = ndimage.map_coordinates(data[::2], idx) assert_array_almost_equal(out, [[0, 0, 0, 0], [0, 4, 1, 3]]) assert_array_almost_equal(out, ndimage.shift(data[::2], (1, 1))) idx = numpy.indices(data[:, ::2].shape) - 1 out = ndimage.map_coordinates(data[:, ::2], idx) assert_array_almost_equal(out, [[0, 0], [0, 4], [0, 7]]) assert_array_almost_equal(out, ndimage.shift(data[:, ::2], (1, 1))) def test_map_coordinates_endianness_with_output_parameter(self): # output parameter given as array or dtype with either endianness # see issue #4127 data = numpy.array([[1, 2], [7, 6]]) expected = numpy.array([[0, 0], [0, 1]]) idx = numpy.indices(data.shape) idx -= 1 for out in [ data.dtype, data.dtype.newbyteorder(), numpy.empty_like(expected), numpy.empty_like(expected).astype(expected.dtype.newbyteorder()) ]: returned = ndimage.map_coordinates(data, idx, output=out) result = out if returned is None else returned assert_array_almost_equal(result, expected) def test_map_coordinates_with_string_output(self): data = numpy.array([[1]]) idx = numpy.indices(data.shape) out = ndimage.map_coordinates(data, idx, output='f') assert_(out.dtype is numpy.dtype('f')) assert_array_almost_equal(out, [[1]]) @pytest.mark.skipif('win32' in sys.platform or numpy.intp(0).itemsize < 8, reason='do not run on 32 bit or windows ' '(no sparse memory)') def test_map_coordinates_large_data(self): # check crash on large data try: n = 30000 a = numpy.empty(n**2, dtype=numpy.float32).reshape(n, n) # fill the part we might read a[n - 3:, n - 3:] = 0 ndimage.map_coordinates(a, [[n - 1.5], [n - 1.5]], order=1) except MemoryError as e: raise pytest.skip('Not enough memory available') from e @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform01(self, order): data = numpy.array([1]) out = ndimage.affine_transform(data, [[1]], order=order) assert_array_almost_equal(out, [1]) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform02(self, order): data = numpy.ones([4]) out = ndimage.affine_transform(data, [[1]], order=order) assert_array_almost_equal(out, [1, 1, 1, 1]) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform03(self, order): data = numpy.ones([4]) out = ndimage.affine_transform(data, [[1]], -1, order=order) assert_array_almost_equal(out, [0, 1, 1, 1]) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform04(self, order): data = numpy.array([4, 1, 3, 2]) out = ndimage.affine_transform(data, [[1]], -1, order=order) assert_array_almost_equal(out, [0, 4, 1, 3]) @pytest.mark.parametrize('order', range(0, 6)) @pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128]) def test_affine_transform05(self, order, dtype): data = numpy.array([[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], dtype=dtype) expected = numpy.array([[0, 1, 1, 1], [0, 1, 1, 1], [0, 1, 1, 1]], dtype=dtype) if data.dtype.kind == 'c': data -= 1j * data expected -= 1j * expected out = ndimage.affine_transform(data, [[1, 0], [0, 1]], [0, -1], order=order) assert_array_almost_equal(out, expected) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform06(self, order): data = numpy.array([[4, 1, 3, 2], [7, 6, 8, 5], [3, 5, 3, 6]]) out = ndimage.affine_transform(data, [[1, 0], [0, 1]], [0, -1], order=order) assert_array_almost_equal(out, [[0, 4, 1, 3], [0, 7, 6, 8], [0, 3, 5, 3]]) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform07(self, order): data = numpy.array([[4, 1, 3, 2], [7, 6, 8, 5], [3, 5, 3, 6]]) out = ndimage.affine_transform(data, [[1, 0], [0, 1]], [-1, 0], order=order) assert_array_almost_equal(out, [[0, 0, 0, 0], [4, 1, 3, 2], [7, 6, 8, 5]]) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform08(self, order): data = numpy.array([[4, 1, 3, 2], [7, 6, 8, 5], [3, 5, 3, 6]]) out = ndimage.affine_transform(data, [[1, 0], [0, 1]], [-1, -1], order=order) assert_array_almost_equal(out, [[0, 0, 0, 0], [0, 4, 1, 3], [0, 7, 6, 8]]) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform09(self, order): data = numpy.array([[4, 1, 3, 2], [7, 6, 8, 5], [3, 5, 3, 6]]) if (order > 1): filtered = ndimage.spline_filter(data, order=order) else: filtered = data out = ndimage.affine_transform(filtered, [[1, 0], [0, 1]], [-1, -1], order=order, prefilter=False) assert_array_almost_equal(out, [[0, 0, 0, 0], [0, 4, 1, 3], [0, 7, 6, 8]]) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform10(self, order): data = numpy.ones([2], numpy.float64) out = ndimage.affine_transform(data, [[0.5]], output_shape=(4,), order=order) assert_array_almost_equal(out, [1, 1, 1, 0]) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform11(self, order): data = [1, 5, 2, 6, 3, 7, 4, 4] out = ndimage.affine_transform(data, [[2]], 0, (4,), order=order) assert_array_almost_equal(out, [1, 2, 3, 4]) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform12(self, order): data = [1, 2, 3, 4] out = ndimage.affine_transform(data, [[0.5]], 0, (8,), order=order) assert_array_almost_equal(out[::2], [1, 2, 3, 4]) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform13(self, order): data = [[1, 2, 3, 4], [5, 6, 7, 8], [9.0, 10, 11, 12]] out = ndimage.affine_transform(data, [[1, 0], [0, 2]], 0, (3, 2), order=order) assert_array_almost_equal(out, [[1, 3], [5, 7], [9, 11]]) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform14(self, order): data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] out = ndimage.affine_transform(data, [[2, 0], [0, 1]], 0, (1, 4), order=order) assert_array_almost_equal(out, [[1, 2, 3, 4]]) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform15(self, order): data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] out = ndimage.affine_transform(data, [[2, 0], [0, 2]], 0, (1, 2), order=order) assert_array_almost_equal(out, [[1, 3]]) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform16(self, order): data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] out = ndimage.affine_transform(data, [[1, 0.0], [0, 0.5]], 0, (3, 8), order=order) assert_array_almost_equal(out[..., ::2], data) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform17(self, order): data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] out = ndimage.affine_transform(data, [[0.5, 0], [0, 1]], 0, (6, 4), order=order) assert_array_almost_equal(out[::2, ...], data) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform18(self, order): data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] out = ndimage.affine_transform(data, [[0.5, 0], [0, 0.5]], 0, (6, 8), order=order) assert_array_almost_equal(out[::2, ::2], data) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform19(self, order): data = numpy.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], numpy.float64) out = ndimage.affine_transform(data, [[0.5, 0], [0, 0.5]], 0, (6, 8), order=order) out = ndimage.affine_transform(out, [[2.0, 0], [0, 2.0]], 0, (3, 4), order=order) assert_array_almost_equal(out, data) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform20(self, order): data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] out = ndimage.affine_transform(data, [[0], [2]], 0, (2,), order=order) assert_array_almost_equal(out, [1, 3]) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform21(self, order): data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] out = ndimage.affine_transform(data, [[2], [0]], 0, (2,), order=order) assert_array_almost_equal(out, [1, 9]) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform22(self, order): # shift and offset interaction; see issue #1547 data = numpy.array([4, 1, 3, 2]) out = ndimage.affine_transform(data, [[2]], [-1], (3,), order=order) assert_array_almost_equal(out, [0, 1, 2]) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform23(self, order): # shift and offset interaction; see issue #1547 data = numpy.array([4, 1, 3, 2]) out = ndimage.affine_transform(data, [[0.5]], [-1], (8,), order=order) assert_array_almost_equal(out[::2], [0, 4, 1, 3]) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform24(self, order): # consistency between diagonal and non-diagonal case; see issue #1547 data = numpy.array([4, 1, 3, 2]) with suppress_warnings() as sup: sup.filter(UserWarning, 'The behavior of affine_transform with a 1-D array .* ' 'has changed') out1 = ndimage.affine_transform(data, [2], -1, order=order) out2 = ndimage.affine_transform(data, [[2]], -1, order=order) assert_array_almost_equal(out1, out2) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform25(self, order): # consistency between diagonal and non-diagonal case; see issue #1547 data = numpy.array([4, 1, 3, 2]) with suppress_warnings() as sup: sup.filter(UserWarning, 'The behavior of affine_transform with a 1-D array .* ' 'has changed') out1 = ndimage.affine_transform(data, [0.5], -1, order=order) out2 = ndimage.affine_transform(data, [[0.5]], -1, order=order) assert_array_almost_equal(out1, out2) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform26(self, order): # test homogeneous coordinates data = numpy.array([[4, 1, 3, 2], [7, 6, 8, 5], [3, 5, 3, 6]]) if (order > 1): filtered = ndimage.spline_filter(data, order=order) else: filtered = data tform_original = numpy.eye(2) offset_original = -numpy.ones((2, 1)) tform_h1 = numpy.hstack((tform_original, offset_original)) tform_h2 = numpy.vstack((tform_h1, [[0, 0, 1]])) out1 = ndimage.affine_transform(filtered, tform_original, offset_original.ravel(), order=order, prefilter=False) out2 = ndimage.affine_transform(filtered, tform_h1, order=order, prefilter=False) out3 = ndimage.affine_transform(filtered, tform_h2, order=order, prefilter=False) for out in [out1, out2, out3]: assert_array_almost_equal(out, [[0, 0, 0, 0], [0, 4, 1, 3], [0, 7, 6, 8]]) def test_affine_transform27(self): # test valid homogeneous transformation matrix data = numpy.array([[4, 1, 3, 2], [7, 6, 8, 5], [3, 5, 3, 6]]) tform_h1 = numpy.hstack((numpy.eye(2), -numpy.ones((2, 1)))) tform_h2 = numpy.vstack((tform_h1, [[5, 2, 1]])) assert_raises(ValueError, ndimage.affine_transform, data, tform_h2) def test_affine_transform_1d_endianness_with_output_parameter(self): # 1d affine transform given output ndarray or dtype with # either endianness. see issue #7388 data = numpy.ones((2, 2)) for out in [numpy.empty_like(data), numpy.empty_like(data).astype(data.dtype.newbyteorder()), data.dtype, data.dtype.newbyteorder()]: with suppress_warnings() as sup: sup.filter(UserWarning, 'The behavior of affine_transform with a 1-D array ' '.* has changed') returned = ndimage.affine_transform(data, [1, 1], output=out) result = out if returned is None else returned assert_array_almost_equal(result, [[1, 1], [1, 1]]) def test_affine_transform_multi_d_endianness_with_output_parameter(self): # affine transform given output ndarray or dtype with either endianness # see issue #4127 data = numpy.array([1]) for out in [data.dtype, data.dtype.newbyteorder(), numpy.empty_like(data), numpy.empty_like(data).astype(data.dtype.newbyteorder())]: returned = ndimage.affine_transform(data, [[1]], output=out) result = out if returned is None else returned assert_array_almost_equal(result, [1]) def test_affine_transform_output_shape(self): # don't require output_shape when out of a different size is given data = numpy.arange(8, dtype=numpy.float64) out = numpy.ones((16,)) oshape = out.shape ndimage.affine_transform(data, [[1]], output=out) assert_array_almost_equal(out[:8], data) # mismatched output shape raises an error with pytest.raises(RuntimeError): ndimage.affine_transform( data, [[1]], output=out, output_shape=(12,)) def test_affine_transform_with_string_output(self): data = numpy.array([1]) out = ndimage.affine_transform(data, [[1]], output='f') assert_(out.dtype is numpy.dtype('f')) assert_array_almost_equal(out, [1]) @pytest.mark.parametrize('shift', [(1, 0), (0, 1), (-1, 1), (3, -5), (2, 7)]) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform_shift_via_grid_wrap(self, shift, order): # For mode 'grid-wrap', integer shifts should match numpy.roll x = numpy.array([[0, 1], [2, 3]]) affine = numpy.zeros((2, 3)) affine[:2, :2] = numpy.eye(2) affine[:, 2] = shift assert_array_almost_equal( ndimage.affine_transform(x, affine, mode='grid-wrap', order=order), numpy.roll(x, shift, axis=(0, 1)), ) @pytest.mark.parametrize('order', range(0, 6)) def test_affine_transform_shift_reflect(self, order): # shift by x.shape results in reflection x = numpy.array([[0, 1, 2], [3, 4, 5]]) affine = numpy.zeros((2, 3)) affine[:2, :2] = numpy.eye(2) affine[:, 2] = x.shape assert_array_almost_equal( ndimage.affine_transform(x, affine, mode='reflect', order=order), x[::-1, ::-1], ) @pytest.mark.parametrize('order', range(0, 6)) def test_shift01(self, order): data = numpy.array([1]) out = ndimage.shift(data, [1], order=order) assert_array_almost_equal(out, [0]) @pytest.mark.parametrize('order', range(0, 6)) def test_shift02(self, order): data = numpy.ones([4]) out = ndimage.shift(data, [1], order=order) assert_array_almost_equal(out, [0, 1, 1, 1]) @pytest.mark.parametrize('order', range(0, 6)) def test_shift03(self, order): data = numpy.ones([4]) out = ndimage.shift(data, -1, order=order) assert_array_almost_equal(out, [1, 1, 1, 0]) @pytest.mark.parametrize('order', range(0, 6)) def test_shift04(self, order): data = numpy.array([4, 1, 3, 2]) out = ndimage.shift(data, 1, order=order) assert_array_almost_equal(out, [0, 4, 1, 3]) @pytest.mark.parametrize('order', range(0, 6)) @pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128]) def test_shift05(self, order, dtype): data = numpy.array([[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], dtype=dtype) expected = numpy.array([[0, 1, 1, 1], [0, 1, 1, 1], [0, 1, 1, 1]], dtype=dtype) if data.dtype.kind == 'c': data -= 1j * data expected -= 1j * expected out = ndimage.shift(data, [0, 1], order=order) assert_array_almost_equal(out, expected) @pytest.mark.parametrize('order', range(0, 6)) @pytest.mark.parametrize('mode', ['constant', 'grid-constant']) @pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128]) def test_shift_with_nonzero_cval(self, order, mode, dtype): data = numpy.array([[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], dtype=dtype) expected = numpy.array([[0, 1, 1, 1], [0, 1, 1, 1], [0, 1, 1, 1]], dtype=dtype) if data.dtype.kind == 'c': data -= 1j * data expected -= 1j * expected cval = 5.0 expected[:, 0] = cval # specific to shift of [0, 1] used below out = ndimage.shift(data, [0, 1], order=order, mode=mode, cval=cval) assert_array_almost_equal(out, expected) @pytest.mark.parametrize('order', range(0, 6)) def test_shift06(self, order): data = numpy.array([[4, 1, 3, 2], [7, 6, 8, 5], [3, 5, 3, 6]]) out = ndimage.shift(data, [0, 1], order=order) assert_array_almost_equal(out, [[0, 4, 1, 3], [0, 7, 6, 8], [0, 3, 5, 3]]) @pytest.mark.parametrize('order', range(0, 6)) def test_shift07(self, order): data = numpy.array([[4, 1, 3, 2], [7, 6, 8, 5], [3, 5, 3, 6]]) out = ndimage.shift(data, [1, 0], order=order) assert_array_almost_equal(out, [[0, 0, 0, 0], [4, 1, 3, 2], [7, 6, 8, 5]]) @pytest.mark.parametrize('order', range(0, 6)) def test_shift08(self, order): data = numpy.array([[4, 1, 3, 2], [7, 6, 8, 5], [3, 5, 3, 6]]) out = ndimage.shift(data, [1, 1], order=order) assert_array_almost_equal(out, [[0, 0, 0, 0], [0, 4, 1, 3], [0, 7, 6, 8]]) @pytest.mark.parametrize('order', range(0, 6)) def test_shift09(self, order): data = numpy.array([[4, 1, 3, 2], [7, 6, 8, 5], [3, 5, 3, 6]]) if (order > 1): filtered = ndimage.spline_filter(data, order=order) else: filtered = data out = ndimage.shift(filtered, [1, 1], order=order, prefilter=False) assert_array_almost_equal(out, [[0, 0, 0, 0], [0, 4, 1, 3], [0, 7, 6, 8]]) @pytest.mark.parametrize('shift', [(1, 0), (0, 1), (-1, 1), (3, -5), (2, 7)]) @pytest.mark.parametrize('order', range(0, 6)) def test_shift_grid_wrap(self, shift, order): # For mode 'grid-wrap', integer shifts should match numpy.roll x = numpy.array([[0, 1], [2, 3]]) assert_array_almost_equal( ndimage.shift(x, shift, mode='grid-wrap', order=order), numpy.roll(x, shift, axis=(0, 1)), ) @pytest.mark.parametrize('shift', [(1, 0), (0, 1), (-1, 1), (3, -5), (2, 7)]) @pytest.mark.parametrize('order', range(0, 6)) def test_shift_grid_constant1(self, shift, order): # For integer shifts, 'constant' and 'grid-constant' should be equal x = numpy.arange(20).reshape((5, 4)) assert_array_almost_equal( ndimage.shift(x, shift, mode='grid-constant', order=order), ndimage.shift(x, shift, mode='constant', order=order), ) def test_shift_grid_constant_order1(self): x = numpy.array([[1, 2, 3], [4, 5, 6]], dtype=float) expected_result = numpy.array([[0.25, 0.75, 1.25], [1.25, 3.00, 4.00]]) assert_array_almost_equal( ndimage.shift(x, (0.5, 0.5), mode='grid-constant', order=1), expected_result, ) @pytest.mark.parametrize('order', range(0, 6)) def test_shift_reflect(self, order): # shift by x.shape results in reflection x = numpy.array([[0, 1, 2], [3, 4, 5]]) assert_array_almost_equal( ndimage.shift(x, x.shape, mode='reflect', order=order), x[::-1, ::-1], ) @pytest.mark.parametrize('order', range(0, 6)) @pytest.mark.parametrize('prefilter', [False, True]) def test_shift_nearest_boundary(self, order, prefilter): # verify that shifting at least order // 2 beyond the end of the array # gives a value equal to the edge value. x = numpy.arange(16) kwargs = dict(mode='nearest', order=order, prefilter=prefilter) assert_array_almost_equal( ndimage.shift(x, order // 2 + 1, **kwargs)[0], x[0], ) assert_array_almost_equal( ndimage.shift(x, -order // 2 - 1, **kwargs)[-1], x[-1], ) @pytest.mark.parametrize('mode', ['grid-constant', 'grid-wrap', 'nearest', 'mirror', 'reflect']) @pytest.mark.parametrize('order', range(6)) def test_shift_vs_padded(self, order, mode): x = numpy.arange(144, dtype=float).reshape(12, 12) shift = (0.4, -2.3) # manually pad and then extract center to get expected result npad = 32 pad_mode = ndimage_to_numpy_mode.get(mode) xp = numpy.pad(x, npad, mode=pad_mode) center_slice = tuple([slice(npad, -npad)] * x.ndim) expected_result = ndimage.shift( xp, shift, mode=mode, order=order)[center_slice] assert_allclose( ndimage.shift(x, shift, mode=mode, order=order), expected_result, rtol=1e-7, ) @pytest.mark.parametrize('order', range(0, 6)) def test_zoom1(self, order): for z in [2, [2, 2]]: arr = numpy.array(list(range(25))).reshape((5, 5)).astype(float) arr = ndimage.zoom(arr, z, order=order) assert_equal(arr.shape, (10, 10)) assert_(numpy.all(arr[-1, :] != 0)) assert_(numpy.all(arr[-1, :] >= (20 - eps))) assert_(numpy.all(arr[0, :] <= (5 + eps))) assert_(numpy.all(arr >= (0 - eps))) assert_(numpy.all(arr <= (24 + eps))) def test_zoom2(self): arr = numpy.arange(12).reshape((3, 4)) out = ndimage.zoom(ndimage.zoom(arr, 2), 0.5) assert_array_equal(out, arr) def test_zoom3(self): arr = numpy.array([[1, 2]]) out1 = ndimage.zoom(arr, (2, 1)) out2 = ndimage.zoom(arr, (1, 2)) assert_array_almost_equal(out1, numpy.array([[1, 2], [1, 2]])) assert_array_almost_equal(out2, numpy.array([[1, 1, 2, 2]])) @pytest.mark.parametrize('order', range(0, 6)) @pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128]) def test_zoom_affine01(self, order, dtype): data = numpy.asarray([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], dtype=dtype) if data.dtype.kind == 'c': data -= 1j * data with suppress_warnings() as sup: sup.filter(UserWarning, 'The behavior of affine_transform with a 1-D array .* ' 'has changed') out = ndimage.affine_transform(data, [0.5, 0.5], 0, (6, 8), order=order) assert_array_almost_equal(out[::2, ::2], data) def test_zoom_infinity(self): # Ticket #1419 regression test dim = 8 ndimage.zoom(numpy.zeros((dim, dim)), 1. / dim, mode='nearest') def test_zoom_zoomfactor_one(self): # Ticket #1122 regression test arr = numpy.zeros((1, 5, 5)) zoom = (1.0, 2.0, 2.0) out = ndimage.zoom(arr, zoom, cval=7) ref = numpy.zeros((1, 10, 10)) assert_array_almost_equal(out, ref) def test_zoom_output_shape_roundoff(self): arr = numpy.zeros((3, 11, 25)) zoom = (4.0 / 3, 15.0 / 11, 29.0 / 25) out = ndimage.zoom(arr, zoom) assert_array_equal(out.shape, (4, 15, 29)) @pytest.mark.parametrize('zoom', [(1, 1), (3, 5), (8, 2), (8, 8)]) @pytest.mark.parametrize('mode', ['nearest', 'constant', 'wrap', 'reflect', 'mirror', 'grid-wrap', 'grid-mirror', 'grid-constant']) def test_zoom_by_int_order0(self, zoom, mode): # order 0 zoom should be the same as replication via numpy.kron # Note: This is not True for general x shapes when grid_mode is False, # but works here for all modes because the size ratio happens to # always be an integer when x.shape = (2, 2). x = numpy.array([[0, 1], [2, 3]], dtype=float) # x = numpy.arange(16, dtype=float).reshape(4, 4) assert_array_almost_equal( ndimage.zoom(x, zoom, order=0, mode=mode), numpy.kron(x, numpy.ones(zoom)) ) @pytest.mark.parametrize('shape', [(2, 3), (4, 4)]) @pytest.mark.parametrize('zoom', [(1, 1), (3, 5), (8, 2), (8, 8)]) @pytest.mark.parametrize('mode', ['nearest', 'reflect', 'mirror', 'grid-wrap', 'grid-constant']) def test_zoom_grid_by_int_order0(self, shape, zoom, mode): # When grid_mode is True, order 0 zoom should be the same as # replication via numpy.kron. The only exceptions to this are the # non-grid modes 'constant' and 'wrap'. x = numpy.arange(numpy.prod(shape), dtype=float).reshape(shape) assert_array_almost_equal( ndimage.zoom(x, zoom, order=0, mode=mode, grid_mode=True), numpy.kron(x, numpy.ones(zoom)) ) @pytest.mark.parametrize('mode', ['constant', 'wrap']) def test_zoom_grid_mode_warnings(self, mode): # Warn on use of non-grid modes when grid_mode is True x = numpy.arange(9, dtype=float).reshape((3, 3)) with pytest.warns(UserWarning, match="It is recommended to use mode"): ndimage.zoom(x, 2, mode=mode, grid_mode=True), @pytest.mark.parametrize('order', range(0, 6)) def test_rotate01(self, order): data = numpy.array([[0, 0, 0, 0], [0, 1, 1, 0], [0, 0, 0, 0]], dtype=numpy.float64) out = ndimage.rotate(data, 0, order=order) assert_array_almost_equal(out, data) @pytest.mark.parametrize('order', range(0, 6)) def test_rotate02(self, order): data = numpy.array([[0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0]], dtype=numpy.float64) expected = numpy.array([[0, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 0]], dtype=numpy.float64) out = ndimage.rotate(data, 90, order=order) assert_array_almost_equal(out, expected) @pytest.mark.parametrize('order', range(0, 6)) @pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128]) def test_rotate03(self, order, dtype): data = numpy.array([[0, 0, 0, 0, 0], [0, 1, 1, 0, 0], [0, 0, 0, 0, 0]], dtype=dtype) expected = numpy.array([[0, 0, 0], [0, 0, 0], [0, 1, 0], [0, 1, 0], [0, 0, 0]], dtype=dtype) if data.dtype.kind == 'c': data -= 1j * data expected -= 1j * expected out = ndimage.rotate(data, 90, order=order) assert_array_almost_equal(out, expected) @pytest.mark.parametrize('order', range(0, 6)) def test_rotate04(self, order): data = numpy.array([[0, 0, 0, 0, 0], [0, 1, 1, 0, 0], [0, 0, 0, 0, 0]], dtype=numpy.float64) expected = numpy.array([[0, 0, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0]], dtype=numpy.float64) out = ndimage.rotate(data, 90, reshape=False, order=order) assert_array_almost_equal(out, expected) @pytest.mark.parametrize('order', range(0, 6)) def test_rotate05(self, order): data = numpy.empty((4, 3, 3)) for i in range(3): data[:, :, i] = numpy.array([[0, 0, 0], [0, 1, 0], [0, 1, 0], [0, 0, 0]], dtype=numpy.float64) expected = numpy.array([[0, 0, 0, 0], [0, 1, 1, 0], [0, 0, 0, 0]], dtype=numpy.float64) out = ndimage.rotate(data, 90, order=order) for i in range(3): assert_array_almost_equal(out[:, :, i], expected) @pytest.mark.parametrize('order', range(0, 6)) def test_rotate06(self, order): data = numpy.empty((3, 4, 3)) for i in range(3): data[:, :, i] = numpy.array([[0, 0, 0, 0], [0, 1, 1, 0], [0, 0, 0, 0]], dtype=numpy.float64) expected = numpy.array([[0, 0, 0], [0, 1, 0], [0, 1, 0], [0, 0, 0]], dtype=numpy.float64) out = ndimage.rotate(data, 90, order=order) for i in range(3): assert_array_almost_equal(out[:, :, i], expected) @pytest.mark.parametrize('order', range(0, 6)) def test_rotate07(self, order): data = numpy.array([[[0, 0, 0, 0, 0], [0, 1, 1, 0, 0], [0, 0, 0, 0, 0]]] * 2, dtype=numpy.float64) data = data.transpose() expected = numpy.array([[[0, 0, 0], [0, 1, 0], [0, 1, 0], [0, 0, 0], [0, 0, 0]]] * 2, dtype=numpy.float64) expected = expected.transpose([2, 1, 0]) out = ndimage.rotate(data, 90, axes=(0, 1), order=order) assert_array_almost_equal(out, expected) @pytest.mark.parametrize('order', range(0, 6)) def test_rotate08(self, order): data = numpy.array([[[0, 0, 0, 0, 0], [0, 1, 1, 0, 0], [0, 0, 0, 0, 0]]] * 2, dtype=numpy.float64) data = data.transpose() expected = numpy.array([[[0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 0]]] * 2, dtype=numpy.float64) expected = expected.transpose() out = ndimage.rotate(data, 90, axes=(0, 1), reshape=False, order=order) assert_array_almost_equal(out, expected) def test_rotate09(self): data = numpy.array([[0, 0, 0, 0, 0], [0, 1, 1, 0, 0], [0, 0, 0, 0, 0]] * 2, dtype=numpy.float64) with assert_raises(ValueError): ndimage.rotate(data, 90, axes=(0, data.ndim)) def test_rotate10(self): data = numpy.arange(45, dtype=numpy.float64).reshape((3, 5, 3)) # The output of ndimage.rotate before refactoring expected = numpy.array([[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [6.54914793, 7.54914793, 8.54914793], [10.84520162, 11.84520162, 12.84520162], [0.0, 0.0, 0.0]], [[6.19286575, 7.19286575, 8.19286575], [13.4730712, 14.4730712, 15.4730712], [21.0, 22.0, 23.0], [28.5269288, 29.5269288, 30.5269288], [35.80713425, 36.80713425, 37.80713425]], [[0.0, 0.0, 0.0], [31.15479838, 32.15479838, 33.15479838], [35.45085207, 36.45085207, 37.45085207], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]]) out = ndimage.rotate(data, angle=12, reshape=False) assert_array_almost_equal(out, expected) def test_rotate_exact_180(self): a = numpy.tile(numpy.arange(5), (5, 1)) b = ndimage.rotate(ndimage.rotate(a, 180), -180) assert_equal(a, b) def test_zoom_output_shape(): """Ticket #643""" x = numpy.arange(12).reshape((3, 4)) ndimage.zoom(x, 2, output=numpy.zeros((6, 8)))