import itertools import sys import pytest import numpy as np from numpy.testing import assert_ from scipy.special._testutils import FuncData from scipy.special import kolmogorov, kolmogi, smirnov, smirnovi from scipy.special._ufuncs import (_kolmogc, _kolmogci, _kolmogp, _smirnovc, _smirnovci, _smirnovp) _rtol = 1e-10 class TestSmirnov: def test_nan(self): assert_(np.isnan(smirnov(1, np.nan))) def test_basic(self): dataset = [(1, 0.1, 0.9), (1, 0.875, 0.125), (2, 0.875, 0.125 * 0.125), (3, 0.875, 0.125 * 0.125 * 0.125)] dataset = np.asarray(dataset) FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) dataset[:, -1] = 1 - dataset[:, -1] FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) def test_x_equals_0(self): dataset = [(n, 0, 1) for n in itertools.chain(range(2, 20), range(1010, 1020))] dataset = np.asarray(dataset) FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) dataset[:, -1] = 1 - dataset[:, -1] FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) def test_x_equals_1(self): dataset = [(n, 1, 0) for n in itertools.chain(range(2, 20), range(1010, 1020))] dataset = np.asarray(dataset) FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) dataset[:, -1] = 1 - dataset[:, -1] FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) def test_x_equals_0point5(self): dataset = [(1, 0.5, 0.5), (2, 0.5, 0.25), (3, 0.5, 0.166666666667), (4, 0.5, 0.09375), (5, 0.5, 0.056), (6, 0.5, 0.0327932098765), (7, 0.5, 0.0191958707681), (8, 0.5, 0.0112953186035), (9, 0.5, 0.00661933257355), (10, 0.5, 0.003888705)] dataset = np.asarray(dataset) FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) dataset[:, -1] = 1 - dataset[:, -1] FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) def test_n_equals_1(self): x = np.linspace(0, 1, 101, endpoint=True) dataset = np.column_stack([[1]*len(x), x, 1-x]) FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) dataset[:, -1] = 1 - dataset[:, -1] FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) def test_n_equals_2(self): x = np.linspace(0.5, 1, 101, endpoint=True) p = np.power(1-x, 2) n = np.array([2] * len(x)) dataset = np.column_stack([n, x, p]) FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) dataset[:, -1] = 1 - dataset[:, -1] FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) def test_n_equals_3(self): x = np.linspace(0.7, 1, 31, endpoint=True) p = np.power(1-x, 3) n = np.array([3] * len(x)) dataset = np.column_stack([n, x, p]) FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) dataset[:, -1] = 1 - dataset[:, -1] FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) def test_n_large(self): # test for large values of n # Probabilities should go down as n goes up x = 0.4 pvals = np.array([smirnov(n, x) for n in range(400, 1100, 20)]) dfs = np.diff(pvals) assert_(np.all(dfs <= 0), msg='Not all diffs negative %s' % dfs) class TestSmirnovi: def test_nan(self): assert_(np.isnan(smirnovi(1, np.nan))) def test_basic(self): dataset = [(1, 0.4, 0.6), (1, 0.6, 0.4), (1, 0.99, 0.01), (1, 0.01, 0.99), (2, 0.125 * 0.125, 0.875), (3, 0.125 * 0.125 * 0.125, 0.875), (10, 1.0 / 16 ** 10, 1 - 1.0 / 16)] dataset = np.asarray(dataset) FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) dataset[:, 1] = 1 - dataset[:, 1] FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) def test_x_equals_0(self): dataset = [(n, 0, 1) for n in itertools.chain(range(2, 20), range(1010, 1020))] dataset = np.asarray(dataset) FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) dataset[:, 1] = 1 - dataset[:, 1] FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) def test_x_equals_1(self): dataset = [(n, 1, 0) for n in itertools.chain(range(2, 20), range(1010, 1020))] dataset = np.asarray(dataset) FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) dataset[:, 1] = 1 - dataset[:, 1] FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) def test_n_equals_1(self): pp = np.linspace(0, 1, 101, endpoint=True) # dataset = np.array([(1, p, 1-p) for p in pp]) dataset = np.column_stack([[1]*len(pp), pp, 1-pp]) FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) dataset[:, 1] = 1 - dataset[:, 1] FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) def test_n_equals_2(self): x = np.linspace(0.5, 1, 101, endpoint=True) p = np.power(1-x, 2) n = np.array([2] * len(x)) dataset = np.column_stack([n, p, x]) FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) dataset[:, 1] = 1 - dataset[:, 1] FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) def test_n_equals_3(self): x = np.linspace(0.7, 1, 31, endpoint=True) p = np.power(1-x, 3) n = np.array([3] * len(x)) dataset = np.column_stack([n, p, x]) FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) dataset[:, 1] = 1 - dataset[:, 1] FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) def test_round_trip(self): def _sm_smi(n, p): return smirnov(n, smirnovi(n, p)) def _smc_smci(n, p): return _smirnovc(n, _smirnovci(n, p)) dataset = [(1, 0.4, 0.4), (1, 0.6, 0.6), (2, 0.875, 0.875), (3, 0.875, 0.875), (3, 0.125, 0.125), (10, 0.999, 0.999), (10, 0.0001, 0.0001)] dataset = np.asarray(dataset) FuncData(_sm_smi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) FuncData(_smc_smci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) def test_x_equals_0point5(self): dataset = [(1, 0.5, 0.5), (2, 0.5, 0.366025403784), (2, 0.25, 0.5), (3, 0.5, 0.297156508177), (4, 0.5, 0.255520481121), (5, 0.5, 0.234559536069), (6, 0.5, 0.21715965898), (7, 0.5, 0.202722580034), (8, 0.5, 0.190621765256), (9, 0.5, 0.180363501362), (10, 0.5, 0.17157867006)] dataset = np.asarray(dataset) FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) dataset[:, 1] = 1 - dataset[:, 1] FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) class TestSmirnovp: def test_nan(self): assert_(np.isnan(_smirnovp(1, np.nan))) def test_basic(self): # Check derivative at endpoints n1_10 = np.arange(1, 10) dataset0 = np.column_stack([n1_10, np.full_like(n1_10, 0), np.full_like(n1_10, -1)]) FuncData(_smirnovp, dataset0, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) n2_10 = np.arange(2, 10) dataset1 = np.column_stack([n2_10, np.full_like(n2_10, 1.0), np.full_like(n2_10, 0)]) FuncData(_smirnovp, dataset1, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) def test_oneminusoneovern(self): # Check derivative at x=1-1/n n = np.arange(1, 20) x = 1.0/n xm1 = 1-1.0/n pp1 = -n * x**(n-1) pp1 -= (1-np.sign(n-2)**2) * 0.5 # n=2, x=0.5, 1-1/n = 0.5, need to adjust dataset1 = np.column_stack([n, xm1, pp1]) FuncData(_smirnovp, dataset1, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) def test_oneovertwon(self): # Check derivative at x=1/2n (Discontinuous at x=1/n, so check at x=1/2n) n = np.arange(1, 20) x = 1.0/2/n pp = -(n*x+1) * (1+x)**(n-2) dataset0 = np.column_stack([n, x, pp]) FuncData(_smirnovp, dataset0, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) def test_oneovern(self): # Check derivative at x=1/n (Discontinuous at x=1/n, hard to tell if x==1/n, only use n=power of 2) n = 2**np.arange(1, 10) x = 1.0/n pp = -(n*x+1) * (1+x)**(n-2) + 0.5 dataset0 = np.column_stack([n, x, pp]) FuncData(_smirnovp, dataset0, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) @pytest.mark.xfail(sys.maxsize <= 2**32, reason="requires 64-bit platform") def test_oneovernclose(self): # Check derivative at x=1/n (Discontinuous at x=1/n, test on either side: x=1/n +/- 2epsilon) n = np.arange(3, 20) x = 1.0/n - 2*np.finfo(float).eps pp = -(n*x+1) * (1+x)**(n-2) dataset0 = np.column_stack([n, x, pp]) FuncData(_smirnovp, dataset0, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) x = 1.0/n + 2*np.finfo(float).eps pp = -(n*x+1) * (1+x)**(n-2) + 1 dataset1 = np.column_stack([n, x, pp]) FuncData(_smirnovp, dataset1, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float]) class TestKolmogorov: def test_nan(self): assert_(np.isnan(kolmogorov(np.nan))) def test_basic(self): dataset = [(0, 1.0), (0.5, 0.96394524366487511), (0.8275735551899077, 0.5000000000000000), (1, 0.26999967167735456), (2, 0.00067092525577969533)] dataset = np.asarray(dataset) FuncData(kolmogorov, dataset, (0,), 1, rtol=_rtol).check() def test_linspace(self): x = np.linspace(0, 2.0, 21) dataset = [1.0000000000000000, 1.0000000000000000, 0.9999999999994950, 0.9999906941986655, 0.9971923267772983, 0.9639452436648751, 0.8642827790506042, 0.7112351950296890, 0.5441424115741981, 0.3927307079406543, 0.2699996716773546, 0.1777181926064012, 0.1122496666707249, 0.0680922218447664, 0.0396818795381144, 0.0222179626165251, 0.0119520432391966, 0.0061774306344441, 0.0030676213475797, 0.0014636048371873, 0.0006709252557797] dataset_c = [0.0000000000000000, 6.609305242245699e-53, 5.050407338670114e-13, 9.305801334566668e-06, 0.0028076732227017, 0.0360547563351249, 0.1357172209493958, 0.2887648049703110, 0.4558575884258019, 0.6072692920593457, 0.7300003283226455, 0.8222818073935988, 0.8877503333292751, 0.9319077781552336, 0.9603181204618857, 0.9777820373834749, 0.9880479567608034, 0.9938225693655559, 0.9969323786524203, 0.9985363951628127, 0.9993290747442203] dataset = np.column_stack([x, dataset]) FuncData(kolmogorov, dataset, (0,), 1, rtol=_rtol).check() dataset_c = np.column_stack([x, dataset_c]) FuncData(_kolmogc, dataset_c, (0,), 1, rtol=_rtol).check() def test_linspacei(self): p = np.linspace(0, 1.0, 21, endpoint=True) dataset = [np.inf, 1.3580986393225507, 1.2238478702170823, 1.1379465424937751, 1.0727491749396481, 1.0191847202536859, 0.9730633753323726, 0.9320695842357622, 0.8947644549851197, 0.8601710725555463, 0.8275735551899077, 0.7964065373291559, 0.7661855555617682, 0.7364542888171910, 0.7067326523068980, 0.6764476915028201, 0.6448126061663567, 0.6105590999244391, 0.5711732651063401, 0.5196103791686224, 0.0000000000000000] dataset_c = [0.0000000000000000, 0.5196103791686225, 0.5711732651063401, 0.6105590999244391, 0.6448126061663567, 0.6764476915028201, 0.7067326523068980, 0.7364542888171910, 0.7661855555617682, 0.7964065373291559, 0.8275735551899077, 0.8601710725555463, 0.8947644549851196, 0.9320695842357622, 0.9730633753323727, 1.0191847202536859, 1.0727491749396481, 1.1379465424937754, 1.2238478702170825, 1.3580986393225509, np.inf] dataset = np.column_stack([p[1:], dataset[1:]]) FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check() dataset_c = np.column_stack([p[:-1], dataset_c[:-1]]) FuncData(_kolmogci, dataset_c, (0,), 1, rtol=_rtol).check() def test_smallx(self): epsilon = 0.1 ** np.arange(1, 14) x = np.array([0.571173265106, 0.441027698518, 0.374219690278, 0.331392659217, 0.300820537459, 0.277539353999, 0.259023494805, 0.243829561254, 0.231063086389, 0.220135543236, 0.210641372041, 0.202290283658, 0.19487060742]) dataset = np.column_stack([x, 1-epsilon]) FuncData(kolmogorov, dataset, (0,), 1, rtol=_rtol).check() def test_round_trip(self): def _ki_k(_x): return kolmogi(kolmogorov(_x)) def _kci_kc(_x): return _kolmogci(_kolmogc(_x)) x = np.linspace(0.0, 2.0, 21, endpoint=True) x02 = x[(x == 0) | (x > 0.21)] # Exclude 0.1, 0.2. 0.2 almost makes succeeds, but 0.1 has no chance. dataset02 = np.column_stack([x02, x02]) FuncData(_ki_k, dataset02, (0,), 1, rtol=_rtol).check() dataset = np.column_stack([x, x]) FuncData(_kci_kc, dataset, (0,), 1, rtol=_rtol).check() class TestKolmogi: def test_nan(self): assert_(np.isnan(kolmogi(np.nan))) def test_basic(self): dataset = [(1.0, 0), (0.96394524366487511, 0.5), (0.9, 0.571173265106), (0.5000000000000000, 0.8275735551899077), (0.26999967167735456, 1), (0.00067092525577969533, 2)] dataset = np.asarray(dataset) FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check() def test_smallpcdf(self): epsilon = 0.5 ** np.arange(1, 55, 3) # kolmogi(1-p) == _kolmogci(p) if 1-(1-p) == p, but not necessarily otherwise # Use epsilon s.t. 1-(1-epsilon)) == epsilon, so can use same x-array for both results x = np.array([0.8275735551899077, 0.5345255069097583, 0.4320114038786941, 0.3736868442620478, 0.3345161714909591, 0.3057833329315859, 0.2835052890528936, 0.2655578150208676, 0.2506869966107999, 0.2380971058736669, 0.2272549289962079, 0.2177876361600040, 0.2094254686862041, 0.2019676748836232, 0.1952612948137504, 0.1891874239646641, 0.1836520225050326, 0.1785795904846466]) dataset = np.column_stack([1-epsilon, x]) FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check() dataset = np.column_stack([epsilon, x]) FuncData(_kolmogci, dataset, (0,), 1, rtol=_rtol).check() def test_smallpsf(self): epsilon = 0.5 ** np.arange(1, 55, 3) # kolmogi(p) == _kolmogci(1-p) if 1-(1-p) == p, but not necessarily otherwise # Use epsilon s.t. 1-(1-epsilon)) == epsilon, so can use same x-array for both results x = np.array([0.8275735551899077, 1.3163786275161036, 1.6651092133663343, 1.9525136345289607, 2.2027324540033235, 2.4272929437460848, 2.6327688477341593, 2.8233300509220260, 3.0018183401530627, 3.1702735084088891, 3.3302184446307912, 3.4828258153113318, 3.6290214150152051, 3.7695513262825959, 3.9050272690877326, 4.0359582187082550, 4.1627730557884890, 4.2858371743264527]) dataset = np.column_stack([epsilon, x]) FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check() dataset = np.column_stack([1-epsilon, x]) FuncData(_kolmogci, dataset, (0,), 1, rtol=_rtol).check() def test_round_trip(self): def _k_ki(_p): return kolmogorov(kolmogi(_p)) p = np.linspace(0.1, 1.0, 10, endpoint=True) dataset = np.column_stack([p, p]) FuncData(_k_ki, dataset, (0,), 1, rtol=_rtol).check() class TestKolmogp: def test_nan(self): assert_(np.isnan(_kolmogp(np.nan))) def test_basic(self): dataset = [(0.000000, -0.0), (0.200000, -1.532420541338916e-10), (0.400000, -0.1012254419260496), (0.600000, -1.324123244249925), (0.800000, -1.627024345636592), (1.000000, -1.071948558356941), (1.200000, -0.538512430720529), (1.400000, -0.2222133182429472), (1.600000, -0.07649302775520538), (1.800000, -0.02208687346347873), (2.000000, -0.005367402045629683)] dataset = np.asarray(dataset) FuncData(_kolmogp, dataset, (0,), 1, rtol=_rtol).check()