"""Testing for kernels for Gaussian processes.""" # Author: Jan Hendrik Metzen # License: BSD 3 clause import pytest import numpy as np from inspect import signature from sklearn.gaussian_process.kernels import _approx_fprime from sklearn.metrics.pairwise import ( PAIRWISE_KERNEL_FUNCTIONS, euclidean_distances, pairwise_kernels, ) from sklearn.gaussian_process.kernels import ( RBF, Matern, RationalQuadratic, ExpSineSquared, DotProduct, ConstantKernel, WhiteKernel, PairwiseKernel, KernelOperator, Exponentiation, CompoundKernel, ) from sklearn.base import clone from sklearn.utils._testing import ( assert_almost_equal, assert_array_equal, assert_array_almost_equal, assert_allclose, ) X = np.random.RandomState(0).normal(0, 1, (5, 2)) Y = np.random.RandomState(0).normal(0, 1, (6, 2)) kernel_rbf_plus_white = RBF(length_scale=2.0) + WhiteKernel(noise_level=3.0) kernels = [ RBF(length_scale=2.0), RBF(length_scale_bounds=(0.5, 2.0)), ConstantKernel(constant_value=10.0), 2.0 * RBF(length_scale=0.33, length_scale_bounds="fixed"), 2.0 * RBF(length_scale=0.5), kernel_rbf_plus_white, 2.0 * RBF(length_scale=[0.5, 2.0]), 2.0 * Matern(length_scale=0.33, length_scale_bounds="fixed"), 2.0 * Matern(length_scale=0.5, nu=0.5), 2.0 * Matern(length_scale=1.5, nu=1.5), 2.0 * Matern(length_scale=2.5, nu=2.5), 2.0 * Matern(length_scale=[0.5, 2.0], nu=0.5), 3.0 * Matern(length_scale=[2.0, 0.5], nu=1.5), 4.0 * Matern(length_scale=[0.5, 0.5], nu=2.5), RationalQuadratic(length_scale=0.5, alpha=1.5), ExpSineSquared(length_scale=0.5, periodicity=1.5), DotProduct(sigma_0=2.0), DotProduct(sigma_0=2.0) ** 2, RBF(length_scale=[2.0]), Matern(length_scale=[2.0]), ] for metric in PAIRWISE_KERNEL_FUNCTIONS: if metric in ["additive_chi2", "chi2"]: continue kernels.append(PairwiseKernel(gamma=1.0, metric=metric)) @pytest.mark.parametrize("kernel", kernels) def test_kernel_gradient(kernel): # Compare analytic and numeric gradient of kernels. K, K_gradient = kernel(X, eval_gradient=True) assert K_gradient.shape[0] == X.shape[0] assert K_gradient.shape[1] == X.shape[0] assert K_gradient.shape[2] == kernel.theta.shape[0] def eval_kernel_for_theta(theta): kernel_clone = kernel.clone_with_theta(theta) K = kernel_clone(X, eval_gradient=False) return K K_gradient_approx = _approx_fprime(kernel.theta, eval_kernel_for_theta, 1e-10) assert_almost_equal(K_gradient, K_gradient_approx, 4) @pytest.mark.parametrize( "kernel", [ kernel for kernel in kernels # skip non-basic kernels if not (isinstance(kernel, (KernelOperator, Exponentiation))) ], ) def test_kernel_theta(kernel): # Check that parameter vector theta of kernel is set correctly. theta = kernel.theta _, K_gradient = kernel(X, eval_gradient=True) # Determine kernel parameters that contribute to theta init_sign = signature(kernel.__class__.__init__).parameters.values() args = [p.name for p in init_sign if p.name != "self"] theta_vars = map( lambda s: s[0 : -len("_bounds")], filter(lambda s: s.endswith("_bounds"), args) ) assert set(hyperparameter.name for hyperparameter in kernel.hyperparameters) == set( theta_vars ) # Check that values returned in theta are consistent with # hyperparameter values (being their logarithms) for i, hyperparameter in enumerate(kernel.hyperparameters): assert theta[i] == np.log(getattr(kernel, hyperparameter.name)) # Fixed kernel parameters must be excluded from theta and gradient. for i, hyperparameter in enumerate(kernel.hyperparameters): # create copy with certain hyperparameter fixed params = kernel.get_params() params[hyperparameter.name + "_bounds"] = "fixed" kernel_class = kernel.__class__ new_kernel = kernel_class(**params) # Check that theta and K_gradient are identical with the fixed # dimension left out _, K_gradient_new = new_kernel(X, eval_gradient=True) assert theta.shape[0] == new_kernel.theta.shape[0] + 1 assert K_gradient.shape[2] == K_gradient_new.shape[2] + 1 if i > 0: assert theta[:i] == new_kernel.theta[:i] assert_array_equal(K_gradient[..., :i], K_gradient_new[..., :i]) if i + 1 < len(kernel.hyperparameters): assert theta[i + 1 :] == new_kernel.theta[i:] assert_array_equal(K_gradient[..., i + 1 :], K_gradient_new[..., i:]) # Check that values of theta are modified correctly for i, hyperparameter in enumerate(kernel.hyperparameters): theta[i] = np.log(42) kernel.theta = theta assert_almost_equal(getattr(kernel, hyperparameter.name), 42) setattr(kernel, hyperparameter.name, 43) assert_almost_equal(kernel.theta[i], np.log(43)) @pytest.mark.parametrize( "kernel", [ kernel for kernel in kernels # Identity is not satisfied on diagonal if kernel != kernel_rbf_plus_white ], ) def test_auto_vs_cross(kernel): # Auto-correlation and cross-correlation should be consistent. K_auto = kernel(X) K_cross = kernel(X, X) assert_almost_equal(K_auto, K_cross, 5) @pytest.mark.parametrize("kernel", kernels) def test_kernel_diag(kernel): # Test that diag method of kernel returns consistent results. K_call_diag = np.diag(kernel(X)) K_diag = kernel.diag(X) assert_almost_equal(K_call_diag, K_diag, 5) def test_kernel_operator_commutative(): # Adding kernels and multiplying kernels should be commutative. # Check addition assert_almost_equal((RBF(2.0) + 1.0)(X), (1.0 + RBF(2.0))(X)) # Check multiplication assert_almost_equal((3.0 * RBF(2.0))(X), (RBF(2.0) * 3.0)(X)) def test_kernel_anisotropic(): # Anisotropic kernel should be consistent with isotropic kernels. kernel = 3.0 * RBF([0.5, 2.0]) K = kernel(X) X1 = np.array(X) X1[:, 0] *= 4 K1 = 3.0 * RBF(2.0)(X1) assert_almost_equal(K, K1) X2 = np.array(X) X2[:, 1] /= 4 K2 = 3.0 * RBF(0.5)(X2) assert_almost_equal(K, K2) # Check getting and setting via theta kernel.theta = kernel.theta + np.log(2) assert_array_equal(kernel.theta, np.log([6.0, 1.0, 4.0])) assert_array_equal(kernel.k2.length_scale, [1.0, 4.0]) @pytest.mark.parametrize( "kernel", [kernel for kernel in kernels if kernel.is_stationary()] ) def test_kernel_stationary(kernel): # Test stationarity of kernels. K = kernel(X, X + 1) assert_almost_equal(K[0, 0], np.diag(K)) @pytest.mark.parametrize("kernel", kernels) def test_kernel_input_type(kernel): # Test whether kernels is for vectors or structured data if isinstance(kernel, Exponentiation): assert kernel.requires_vector_input == kernel.kernel.requires_vector_input if isinstance(kernel, KernelOperator): assert kernel.requires_vector_input == ( kernel.k1.requires_vector_input or kernel.k2.requires_vector_input ) def test_compound_kernel_input_type(): kernel = CompoundKernel([WhiteKernel(noise_level=3.0)]) assert not kernel.requires_vector_input kernel = CompoundKernel([WhiteKernel(noise_level=3.0), RBF(length_scale=2.0)]) assert kernel.requires_vector_input def check_hyperparameters_equal(kernel1, kernel2): # Check that hyperparameters of two kernels are equal for attr in set(dir(kernel1) + dir(kernel2)): if attr.startswith("hyperparameter_"): attr_value1 = getattr(kernel1, attr) attr_value2 = getattr(kernel2, attr) assert attr_value1 == attr_value2 @pytest.mark.parametrize("kernel", kernels) def test_kernel_clone(kernel): # Test that sklearn's clone works correctly on kernels. kernel_cloned = clone(kernel) # XXX: Should this be fixed? # This differs from the sklearn's estimators equality check. assert kernel == kernel_cloned assert id(kernel) != id(kernel_cloned) # Check that all constructor parameters are equal. assert kernel.get_params() == kernel_cloned.get_params() # Check that all hyperparameters are equal. check_hyperparameters_equal(kernel, kernel_cloned) @pytest.mark.parametrize("kernel", kernels) def test_kernel_clone_after_set_params(kernel): # This test is to verify that using set_params does not # break clone on kernels. # This used to break because in kernels such as the RBF, non-trivial # logic that modified the length scale used to be in the constructor # See https://github.com/scikit-learn/scikit-learn/issues/6961 # for more details. bounds = (1e-5, 1e5) kernel_cloned = clone(kernel) params = kernel.get_params() # RationalQuadratic kernel is isotropic. isotropic_kernels = (ExpSineSquared, RationalQuadratic) if "length_scale" in params and not isinstance(kernel, isotropic_kernels): length_scale = params["length_scale"] if np.iterable(length_scale): # XXX unreached code as of v0.22 params["length_scale"] = length_scale[0] params["length_scale_bounds"] = bounds else: params["length_scale"] = [length_scale] * 2 params["length_scale_bounds"] = bounds * 2 kernel_cloned.set_params(**params) kernel_cloned_clone = clone(kernel_cloned) assert kernel_cloned_clone.get_params() == kernel_cloned.get_params() assert id(kernel_cloned_clone) != id(kernel_cloned) check_hyperparameters_equal(kernel_cloned, kernel_cloned_clone) def test_matern_kernel(): # Test consistency of Matern kernel for special values of nu. K = Matern(nu=1.5, length_scale=1.0)(X) # the diagonal elements of a matern kernel are 1 assert_array_almost_equal(np.diag(K), np.ones(X.shape[0])) # matern kernel for coef0==0.5 is equal to absolute exponential kernel K_absexp = np.exp(-euclidean_distances(X, X, squared=False)) K = Matern(nu=0.5, length_scale=1.0)(X) assert_array_almost_equal(K, K_absexp) # matern kernel with coef0==inf is equal to RBF kernel K_rbf = RBF(length_scale=1.0)(X) K = Matern(nu=np.inf, length_scale=1.0)(X) assert_array_almost_equal(K, K_rbf) assert_allclose(K, K_rbf) # test that special cases of matern kernel (coef0 in [0.5, 1.5, 2.5]) # result in nearly identical results as the general case for coef0 in # [0.5 + tiny, 1.5 + tiny, 2.5 + tiny] tiny = 1e-10 for nu in [0.5, 1.5, 2.5]: K1 = Matern(nu=nu, length_scale=1.0)(X) K2 = Matern(nu=nu + tiny, length_scale=1.0)(X) assert_array_almost_equal(K1, K2) # test that coef0==large is close to RBF large = 100 K1 = Matern(nu=large, length_scale=1.0)(X) K2 = RBF(length_scale=1.0)(X) assert_array_almost_equal(K1, K2, decimal=2) @pytest.mark.parametrize("kernel", kernels) def test_kernel_versus_pairwise(kernel): # Check that GP kernels can also be used as pairwise kernels. # Test auto-kernel if kernel != kernel_rbf_plus_white: # For WhiteKernel: k(X) != k(X,X). This is assumed by # pairwise_kernels K1 = kernel(X) K2 = pairwise_kernels(X, metric=kernel) assert_array_almost_equal(K1, K2) # Test cross-kernel K1 = kernel(X, Y) K2 = pairwise_kernels(X, Y, metric=kernel) assert_array_almost_equal(K1, K2) @pytest.mark.parametrize("kernel", kernels) def test_set_get_params(kernel): # Check that set_params()/get_params() is consistent with kernel.theta. # Test get_params() index = 0 params = kernel.get_params() for hyperparameter in kernel.hyperparameters: if isinstance("string", type(hyperparameter.bounds)): if hyperparameter.bounds == "fixed": continue size = hyperparameter.n_elements if size > 1: # anisotropic kernels assert_almost_equal( np.exp(kernel.theta[index : index + size]), params[hyperparameter.name] ) index += size else: assert_almost_equal( np.exp(kernel.theta[index]), params[hyperparameter.name] ) index += 1 # Test set_params() index = 0 value = 10 # arbitrary value for hyperparameter in kernel.hyperparameters: if isinstance("string", type(hyperparameter.bounds)): if hyperparameter.bounds == "fixed": continue size = hyperparameter.n_elements if size > 1: # anisotropic kernels kernel.set_params(**{hyperparameter.name: [value] * size}) assert_almost_equal( np.exp(kernel.theta[index : index + size]), [value] * size ) index += size else: kernel.set_params(**{hyperparameter.name: value}) assert_almost_equal(np.exp(kernel.theta[index]), value) index += 1 @pytest.mark.parametrize("kernel", kernels) def test_repr_kernels(kernel): # Smoke-test for repr in kernels. repr(kernel) def test_rational_quadratic_kernel(): kernel = RationalQuadratic(length_scale=[1.0, 1.0]) message = ( "RationalQuadratic kernel only supports isotropic " "version, please use a single " "scalar for length_scale" ) with pytest.raises(AttributeError, match=message): kernel(X)