import numpy as np import pytest from scipy import sparse from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal from sklearn.utils import check_random_state from sklearn.utils._testing import assert_allclose from sklearn.datasets import make_regression from sklearn.linear_model import LinearRegression, RANSACRegressor, Ridge from sklearn.linear_model import OrthogonalMatchingPursuit from sklearn.linear_model._ransac import _dynamic_max_trials from sklearn.exceptions import ConvergenceWarning # Generate coordinates of line X = np.arange(-200, 200) y = 0.2 * X + 20 data = np.column_stack([X, y]) # Add some faulty data rng = np.random.RandomState(1000) outliers = np.unique(rng.randint(len(X), size=200)) data[outliers, :] += 50 + rng.rand(len(outliers), 2) * 10 X = data[:, 0][:, np.newaxis] y = data[:, 1] def test_ransac_inliers_outliers(): estimator = LinearRegression() ransac_estimator = RANSACRegressor( estimator, min_samples=2, residual_threshold=5, random_state=0 ) # Estimate parameters of corrupted data ransac_estimator.fit(X, y) # Ground truth / reference inlier mask ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_).astype(np.bool_) ref_inlier_mask[outliers] = False assert_array_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_is_data_valid(): def is_data_valid(X, y): assert X.shape[0] == 2 assert y.shape[0] == 2 return False rng = np.random.RandomState(0) X = rng.rand(10, 2) y = rng.rand(10, 1) estimator = LinearRegression() ransac_estimator = RANSACRegressor( estimator, min_samples=2, residual_threshold=5, is_data_valid=is_data_valid, random_state=0, ) with pytest.raises(ValueError): ransac_estimator.fit(X, y) def test_ransac_is_model_valid(): def is_model_valid(estimator, X, y): assert X.shape[0] == 2 assert y.shape[0] == 2 return False estimator = LinearRegression() ransac_estimator = RANSACRegressor( estimator, min_samples=2, residual_threshold=5, is_model_valid=is_model_valid, random_state=0, ) with pytest.raises(ValueError): ransac_estimator.fit(X, y) def test_ransac_max_trials(): estimator = LinearRegression() ransac_estimator = RANSACRegressor( estimator, min_samples=2, residual_threshold=5, max_trials=0, random_state=0, ) with pytest.raises(ValueError): ransac_estimator.fit(X, y) # there is a 1e-9 chance it will take these many trials. No good reason # 1e-2 isn't enough, can still happen # 2 is the what ransac defines as min_samples = X.shape[1] + 1 max_trials = _dynamic_max_trials(len(X) - len(outliers), X.shape[0], 2, 1 - 1e-9) ransac_estimator = RANSACRegressor(estimator, min_samples=2) for i in range(50): ransac_estimator.set_params(min_samples=2, random_state=i) ransac_estimator.fit(X, y) assert ransac_estimator.n_trials_ < max_trials + 1 def test_ransac_stop_n_inliers(): estimator = LinearRegression() ransac_estimator = RANSACRegressor( estimator, min_samples=2, residual_threshold=5, stop_n_inliers=2, random_state=0, ) ransac_estimator.fit(X, y) assert ransac_estimator.n_trials_ == 1 def test_ransac_stop_score(): estimator = LinearRegression() ransac_estimator = RANSACRegressor( estimator, min_samples=2, residual_threshold=5, stop_score=0, random_state=0, ) ransac_estimator.fit(X, y) assert ransac_estimator.n_trials_ == 1 def test_ransac_score(): X = np.arange(100)[:, None] y = np.zeros((100,)) y[0] = 1 y[1] = 100 estimator = LinearRegression() ransac_estimator = RANSACRegressor( estimator, min_samples=2, residual_threshold=0.5, random_state=0 ) ransac_estimator.fit(X, y) assert ransac_estimator.score(X[2:], y[2:]) == 1 assert ransac_estimator.score(X[:2], y[:2]) < 1 def test_ransac_predict(): X = np.arange(100)[:, None] y = np.zeros((100,)) y[0] = 1 y[1] = 100 estimator = LinearRegression() ransac_estimator = RANSACRegressor( estimator, min_samples=2, residual_threshold=0.5, random_state=0 ) ransac_estimator.fit(X, y) assert_array_equal(ransac_estimator.predict(X), np.zeros(100)) def test_ransac_no_valid_data(): def is_data_valid(X, y): return False estimator = LinearRegression() ransac_estimator = RANSACRegressor( estimator, is_data_valid=is_data_valid, max_trials=5 ) msg = "RANSAC could not find a valid consensus set" with pytest.raises(ValueError, match=msg): ransac_estimator.fit(X, y) assert ransac_estimator.n_skips_no_inliers_ == 0 assert ransac_estimator.n_skips_invalid_data_ == 5 assert ransac_estimator.n_skips_invalid_model_ == 0 def test_ransac_no_valid_model(): def is_model_valid(estimator, X, y): return False estimator = LinearRegression() ransac_estimator = RANSACRegressor( estimator, is_model_valid=is_model_valid, max_trials=5 ) msg = "RANSAC could not find a valid consensus set" with pytest.raises(ValueError, match=msg): ransac_estimator.fit(X, y) assert ransac_estimator.n_skips_no_inliers_ == 0 assert ransac_estimator.n_skips_invalid_data_ == 0 assert ransac_estimator.n_skips_invalid_model_ == 5 def test_ransac_exceed_max_skips(): def is_data_valid(X, y): return False estimator = LinearRegression() ransac_estimator = RANSACRegressor( estimator, is_data_valid=is_data_valid, max_trials=5, max_skips=3 ) msg = "RANSAC skipped more iterations than `max_skips`" with pytest.raises(ValueError, match=msg): ransac_estimator.fit(X, y) assert ransac_estimator.n_skips_no_inliers_ == 0 assert ransac_estimator.n_skips_invalid_data_ == 4 assert ransac_estimator.n_skips_invalid_model_ == 0 def test_ransac_warn_exceed_max_skips(): global cause_skip cause_skip = False def is_data_valid(X, y): global cause_skip if not cause_skip: cause_skip = True return True else: return False estimator = LinearRegression() ransac_estimator = RANSACRegressor( estimator, is_data_valid=is_data_valid, max_skips=3, max_trials=5 ) warning_message = ( "RANSAC found a valid consensus set but exited " "early due to skipping more iterations than " "`max_skips`. See estimator attributes for " "diagnostics." ) with pytest.warns(ConvergenceWarning, match=warning_message): ransac_estimator.fit(X, y) assert ransac_estimator.n_skips_no_inliers_ == 0 assert ransac_estimator.n_skips_invalid_data_ == 4 assert ransac_estimator.n_skips_invalid_model_ == 0 def test_ransac_sparse_coo(): X_sparse = sparse.coo_matrix(X) estimator = LinearRegression() ransac_estimator = RANSACRegressor( estimator, min_samples=2, residual_threshold=5, random_state=0 ) ransac_estimator.fit(X_sparse, y) ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_).astype(np.bool_) ref_inlier_mask[outliers] = False assert_array_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_sparse_csr(): X_sparse = sparse.csr_matrix(X) estimator = LinearRegression() ransac_estimator = RANSACRegressor( estimator, min_samples=2, residual_threshold=5, random_state=0 ) ransac_estimator.fit(X_sparse, y) ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_).astype(np.bool_) ref_inlier_mask[outliers] = False assert_array_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_sparse_csc(): X_sparse = sparse.csc_matrix(X) estimator = LinearRegression() ransac_estimator = RANSACRegressor( estimator, min_samples=2, residual_threshold=5, random_state=0 ) ransac_estimator.fit(X_sparse, y) ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_).astype(np.bool_) ref_inlier_mask[outliers] = False assert_array_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_none_estimator(): estimator = LinearRegression() ransac_estimator = RANSACRegressor( estimator, min_samples=2, residual_threshold=5, random_state=0 ) ransac_none_estimator = RANSACRegressor( None, min_samples=2, residual_threshold=5, random_state=0 ) ransac_estimator.fit(X, y) ransac_none_estimator.fit(X, y) assert_array_almost_equal( ransac_estimator.predict(X), ransac_none_estimator.predict(X) ) def test_ransac_min_n_samples(): estimator = LinearRegression() ransac_estimator1 = RANSACRegressor( estimator, min_samples=2, residual_threshold=5, random_state=0 ) ransac_estimator2 = RANSACRegressor( estimator, min_samples=2.0 / X.shape[0], residual_threshold=5, random_state=0, ) ransac_estimator5 = RANSACRegressor( estimator, min_samples=2, residual_threshold=5, random_state=0 ) ransac_estimator6 = RANSACRegressor(estimator, residual_threshold=5, random_state=0) ransac_estimator7 = RANSACRegressor( estimator, min_samples=X.shape[0] + 1, residual_threshold=5, random_state=0 ) # GH #19390 ransac_estimator8 = RANSACRegressor( Ridge(), min_samples=None, residual_threshold=5, random_state=0 ) ransac_estimator1.fit(X, y) ransac_estimator2.fit(X, y) ransac_estimator5.fit(X, y) ransac_estimator6.fit(X, y) assert_array_almost_equal( ransac_estimator1.predict(X), ransac_estimator2.predict(X) ) assert_array_almost_equal( ransac_estimator1.predict(X), ransac_estimator5.predict(X) ) assert_array_almost_equal( ransac_estimator1.predict(X), ransac_estimator6.predict(X) ) with pytest.raises(ValueError): ransac_estimator7.fit(X, y) err_msg = "`min_samples` needs to be explicitly set" with pytest.raises(ValueError, match=err_msg): ransac_estimator8.fit(X, y) def test_ransac_multi_dimensional_targets(): estimator = LinearRegression() ransac_estimator = RANSACRegressor( estimator, min_samples=2, residual_threshold=5, random_state=0 ) # 3-D target values yyy = np.column_stack([y, y, y]) # Estimate parameters of corrupted data ransac_estimator.fit(X, yyy) # Ground truth / reference inlier mask ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_).astype(np.bool_) ref_inlier_mask[outliers] = False assert_array_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_residual_loss(): def loss_multi1(y_true, y_pred): return np.sum(np.abs(y_true - y_pred), axis=1) def loss_multi2(y_true, y_pred): return np.sum((y_true - y_pred) ** 2, axis=1) def loss_mono(y_true, y_pred): return np.abs(y_true - y_pred) yyy = np.column_stack([y, y, y]) estimator = LinearRegression() ransac_estimator0 = RANSACRegressor( estimator, min_samples=2, residual_threshold=5, random_state=0 ) ransac_estimator1 = RANSACRegressor( estimator, min_samples=2, residual_threshold=5, random_state=0, loss=loss_multi1, ) ransac_estimator2 = RANSACRegressor( estimator, min_samples=2, residual_threshold=5, random_state=0, loss=loss_multi2, ) # multi-dimensional ransac_estimator0.fit(X, yyy) ransac_estimator1.fit(X, yyy) ransac_estimator2.fit(X, yyy) assert_array_almost_equal( ransac_estimator0.predict(X), ransac_estimator1.predict(X) ) assert_array_almost_equal( ransac_estimator0.predict(X), ransac_estimator2.predict(X) ) # one-dimensional ransac_estimator0.fit(X, y) ransac_estimator2.loss = loss_mono ransac_estimator2.fit(X, y) assert_array_almost_equal( ransac_estimator0.predict(X), ransac_estimator2.predict(X) ) ransac_estimator3 = RANSACRegressor( estimator, min_samples=2, residual_threshold=5, random_state=0, loss="squared_error", ) ransac_estimator3.fit(X, y) assert_array_almost_equal( ransac_estimator0.predict(X), ransac_estimator2.predict(X) ) def test_ransac_default_residual_threshold(): estimator = LinearRegression() ransac_estimator = RANSACRegressor(estimator, min_samples=2, random_state=0) # Estimate parameters of corrupted data ransac_estimator.fit(X, y) # Ground truth / reference inlier mask ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_).astype(np.bool_) ref_inlier_mask[outliers] = False assert_array_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_dynamic_max_trials(): # Numbers hand-calculated and confirmed on page 119 (Table 4.3) in # Hartley, R.~I. and Zisserman, A., 2004, # Multiple View Geometry in Computer Vision, Second Edition, # Cambridge University Press, ISBN: 0521540518 # e = 0%, min_samples = X assert _dynamic_max_trials(100, 100, 2, 0.99) == 1 # e = 5%, min_samples = 2 assert _dynamic_max_trials(95, 100, 2, 0.99) == 2 # e = 10%, min_samples = 2 assert _dynamic_max_trials(90, 100, 2, 0.99) == 3 # e = 30%, min_samples = 2 assert _dynamic_max_trials(70, 100, 2, 0.99) == 7 # e = 50%, min_samples = 2 assert _dynamic_max_trials(50, 100, 2, 0.99) == 17 # e = 5%, min_samples = 8 assert _dynamic_max_trials(95, 100, 8, 0.99) == 5 # e = 10%, min_samples = 8 assert _dynamic_max_trials(90, 100, 8, 0.99) == 9 # e = 30%, min_samples = 8 assert _dynamic_max_trials(70, 100, 8, 0.99) == 78 # e = 50%, min_samples = 8 assert _dynamic_max_trials(50, 100, 8, 0.99) == 1177 # e = 0%, min_samples = 10 assert _dynamic_max_trials(1, 100, 10, 0) == 0 assert _dynamic_max_trials(1, 100, 10, 1) == float("inf") def test_ransac_fit_sample_weight(): ransac_estimator = RANSACRegressor(random_state=0) n_samples = y.shape[0] weights = np.ones(n_samples) ransac_estimator.fit(X, y, weights) # sanity check assert ransac_estimator.inlier_mask_.shape[0] == n_samples ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_).astype(np.bool_) ref_inlier_mask[outliers] = False # check that mask is correct assert_array_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) # check that fit(X) = fit([X1, X2, X3],sample_weight = [n1, n2, n3]) where # X = X1 repeated n1 times, X2 repeated n2 times and so forth random_state = check_random_state(0) X_ = random_state.randint(0, 200, [10, 1]) y_ = np.ndarray.flatten(0.2 * X_ + 2) sample_weight = random_state.randint(0, 10, 10) outlier_X = random_state.randint(0, 1000, [1, 1]) outlier_weight = random_state.randint(0, 10, 1) outlier_y = random_state.randint(-1000, 0, 1) X_flat = np.append( np.repeat(X_, sample_weight, axis=0), np.repeat(outlier_X, outlier_weight, axis=0), axis=0, ) y_flat = np.ndarray.flatten( np.append( np.repeat(y_, sample_weight, axis=0), np.repeat(outlier_y, outlier_weight, axis=0), axis=0, ) ) ransac_estimator.fit(X_flat, y_flat) ref_coef_ = ransac_estimator.estimator_.coef_ sample_weight = np.append(sample_weight, outlier_weight) X_ = np.append(X_, outlier_X, axis=0) y_ = np.append(y_, outlier_y) ransac_estimator.fit(X_, y_, sample_weight) assert_allclose(ransac_estimator.estimator_.coef_, ref_coef_) # check that if estimator.fit doesn't support # sample_weight, raises error estimator = OrthogonalMatchingPursuit() ransac_estimator = RANSACRegressor(estimator, min_samples=10) err_msg = f"{estimator.__class__.__name__} does not support sample_weight." with pytest.raises(ValueError, match=err_msg): ransac_estimator.fit(X, y, weights) def test_ransac_final_model_fit_sample_weight(): X, y = make_regression(n_samples=1000, random_state=10) rng = check_random_state(42) sample_weight = rng.randint(1, 4, size=y.shape[0]) sample_weight = sample_weight / sample_weight.sum() ransac = RANSACRegressor(estimator=LinearRegression(), random_state=0) ransac.fit(X, y, sample_weight=sample_weight) final_model = LinearRegression() mask_samples = ransac.inlier_mask_ final_model.fit( X[mask_samples], y[mask_samples], sample_weight=sample_weight[mask_samples] ) assert_allclose(ransac.estimator_.coef_, final_model.coef_, atol=1e-12) def test_perfect_horizontal_line(): """Check that we can fit a line where all samples are inliers. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/19497 """ X = np.arange(100)[:, None] y = np.zeros((100,)) estimator = LinearRegression() ransac_estimator = RANSACRegressor(estimator, random_state=0) ransac_estimator.fit(X, y) assert_allclose(ransac_estimator.estimator_.coef_, 0.0) assert_allclose(ransac_estimator.estimator_.intercept_, 0.0) def test_base_estimator_deprecated(): ransac_estimator = RANSACRegressor( base_estimator=LinearRegression(), min_samples=2, residual_threshold=5, random_state=0, ) err_msg = ( "`base_estimator` was renamed to `estimator` in version 1.1 and " "will be removed in 1.3." ) with pytest.warns(FutureWarning, match=err_msg): ransac_estimator.fit(X, y)