""" This file is very long and growing, but it was decided to not split it yet, as it's still manageable (2020-03-17, ~1.1k LoC). See gh-31989 Instead of splitting it was decided to define sections here: - Configuration / Settings - Autouse fixtures - Common arguments - Missing values & co. - Classes - Indices - Series' - DataFrames - Operators & Operations - Data sets/files - Time zones - Dtypes - Misc """ from __future__ import annotations from collections import abc from datetime import ( date, datetime, time, timedelta, timezone, ) from decimal import Decimal import operator import os from typing import ( Callable, Hashable, Iterator, ) from dateutil.tz import ( tzlocal, tzutc, ) import hypothesis from hypothesis import strategies as st import numpy as np import pytest from pytz import ( FixedOffset, utc, ) import pandas.util._test_decorators as td from pandas.core.dtypes.dtypes import ( DatetimeTZDtype, IntervalDtype, ) import pandas as pd from pandas import ( DataFrame, Interval, Period, Series, Timedelta, Timestamp, compat, ) import pandas._testing as tm from pandas.core import ops from pandas.core.indexes.api import ( Index, MultiIndex, ) try: import pyarrow as pa except ImportError: has_pyarrow = False else: del pa has_pyarrow = True zoneinfo = None if compat.PY39: # Import "zoneinfo" could not be resolved (reportMissingImports) import zoneinfo # type: ignore[no-redef] # Although zoneinfo can be imported in Py39, it is effectively # "not available" without tzdata/IANA tz data. # We will set zoneinfo to not found in this case try: zoneinfo.ZoneInfo("UTC") # type: ignore[attr-defined] except zoneinfo.ZoneInfoNotFoundError: # type: ignore[attr-defined] zoneinfo = None # ---------------------------------------------------------------- # Configuration / Settings # ---------------------------------------------------------------- # pytest def pytest_addoption(parser) -> None: parser.addoption("--skip-slow", action="store_true", help="skip slow tests") parser.addoption("--skip-network", action="store_true", help="skip network tests") parser.addoption("--skip-db", action="store_true", help="skip db tests") parser.addoption( "--run-high-memory", action="store_true", help="run high memory tests" ) parser.addoption("--only-slow", action="store_true", help="run only slow tests") parser.addoption( "--strict-data-files", action="store_true", help="Fail if a test is skipped for missing data file.", ) def ignore_doctest_warning(item: pytest.Item, path: str, message: str) -> None: """Ignore doctest warning. Parameters ---------- item : pytest.Item pytest test item. path : str Module path to Python object, e.g. "pandas.core.frame.DataFrame.append". A warning will be filtered when item.name ends with in given path. So it is sufficient to specify e.g. "DataFrame.append". message : str Message to be filtered. """ if item.name.endswith(path): item.add_marker(pytest.mark.filterwarnings(f"ignore:{message}")) def pytest_collection_modifyitems(items, config) -> None: skip_slow = config.getoption("--skip-slow") only_slow = config.getoption("--only-slow") skip_network = config.getoption("--skip-network") skip_db = config.getoption("--skip-db") marks = [ (pytest.mark.slow, "slow", skip_slow, "--skip-slow"), (pytest.mark.network, "network", skip_network, "--network"), (pytest.mark.db, "db", skip_db, "--skip-db"), ] # Warnings from doctests that can be ignored; place reason in comment above. # Each entry specifies (path, message) - see the ignore_doctest_warning function ignored_doctest_warnings = [ # Docstring divides by zero to show behavior difference ("missing.mask_zero_div_zero", "divide by zero encountered"), ] for item in items: if config.getoption("--doctest-modules") or config.getoption( "--doctest-cython", default=False ): # autouse=True for the add_doctest_imports can lead to expensive teardowns # since doctest_namespace is a session fixture item.add_marker(pytest.mark.usefixtures("add_doctest_imports")) for path, message in ignored_doctest_warnings: ignore_doctest_warning(item, path, message) # mark all tests in the pandas/tests/frame directory with "arraymanager" if "/frame/" in item.nodeid: item.add_marker(pytest.mark.arraymanager) for mark, kwd, skip_if_found, arg_name in marks: if kwd in item.keywords: # If we're skipping, no need to actually add the marker or look for # other markers if skip_if_found: item.add_marker(pytest.mark.skip(f"skipping due to {arg_name}")) break item.add_marker(mark) if only_slow and "slow" not in item.keywords: item.add_marker(pytest.mark.skip("skipping due to --only-slow")) # Hypothesis hypothesis.settings.register_profile( "ci", # Hypothesis timing checks are tuned for scalars by default, so we bump # them from 200ms to 500ms per test case as the global default. If this # is too short for a specific test, (a) try to make it faster, and (b) # if it really is slow add `@settings(deadline=...)` with a working value, # or `deadline=None` to entirely disable timeouts for that test. # 2022-02-09: Changed deadline from 500 -> None. Deadline leads to # non-actionable, flaky CI failures (# GH 24641, 44969, 45118, 44969) deadline=None, suppress_health_check=(hypothesis.HealthCheck.too_slow,), ) hypothesis.settings.load_profile("ci") # Registering these strategies makes them globally available via st.from_type, # which is use for offsets in tests/tseries/offsets/test_offsets_properties.py for name in "MonthBegin MonthEnd BMonthBegin BMonthEnd".split(): cls = getattr(pd.tseries.offsets, name) st.register_type_strategy( cls, st.builds(cls, n=st.integers(-99, 99), normalize=st.booleans()) ) for name in "YearBegin YearEnd BYearBegin BYearEnd".split(): cls = getattr(pd.tseries.offsets, name) st.register_type_strategy( cls, st.builds( cls, n=st.integers(-5, 5), normalize=st.booleans(), month=st.integers(min_value=1, max_value=12), ), ) for name in "QuarterBegin QuarterEnd BQuarterBegin BQuarterEnd".split(): cls = getattr(pd.tseries.offsets, name) st.register_type_strategy( cls, st.builds( cls, n=st.integers(-24, 24), normalize=st.booleans(), startingMonth=st.integers(min_value=1, max_value=12), ), ) @pytest.fixture def add_doctest_imports(doctest_namespace) -> None: """ Make `np` and `pd` names available for doctests. """ doctest_namespace["np"] = np doctest_namespace["pd"] = pd # ---------------------------------------------------------------- # Autouse fixtures # ---------------------------------------------------------------- @pytest.fixture(autouse=True) def configure_tests() -> None: """ Configure settings for all tests and test modules. """ pd.set_option("chained_assignment", "raise") # ---------------------------------------------------------------- # Common arguments # ---------------------------------------------------------------- @pytest.fixture(params=[0, 1, "index", "columns"], ids=lambda x: f"axis={repr(x)}") def axis(request): """ Fixture for returning the axis numbers of a DataFrame. """ return request.param axis_frame = axis @pytest.fixture(params=[1, "columns"], ids=lambda x: f"axis={repr(x)}") def axis_1(request): """ Fixture for returning aliases of axis 1 of a DataFrame. """ return request.param @pytest.fixture(params=[True, False, None]) def observed(request): """ Pass in the observed keyword to groupby for [True, False] This indicates whether categoricals should return values for values which are not in the grouper [False / None], or only values which appear in the grouper [True]. [None] is supported for future compatibility if we decide to change the default (and would need to warn if this parameter is not passed). """ return request.param @pytest.fixture(params=[True, False, None]) def ordered(request): """ Boolean 'ordered' parameter for Categorical. """ return request.param @pytest.fixture(params=[True, False]) def skipna(request): """ Boolean 'skipna' parameter. """ return request.param @pytest.fixture(params=["first", "last", False]) def keep(request): """ Valid values for the 'keep' parameter used in .duplicated or .drop_duplicates """ return request.param @pytest.fixture(params=["both", "neither", "left", "right"]) def inclusive_endpoints_fixture(request): """ Fixture for trying all interval 'inclusive' parameters. """ return request.param @pytest.fixture(params=["left", "right", "both", "neither"]) def closed(request): """ Fixture for trying all interval closed parameters. """ return request.param @pytest.fixture(params=["left", "right", "both", "neither"]) def other_closed(request): """ Secondary closed fixture to allow parametrizing over all pairs of closed. """ return request.param @pytest.fixture( params=[ None, "gzip", "bz2", "zip", "xz", "tar", pytest.param("zstd", marks=td.skip_if_no("zstandard")), ] ) def compression(request): """ Fixture for trying common compression types in compression tests. """ return request.param @pytest.fixture( params=[ "gzip", "bz2", "zip", "xz", "tar", pytest.param("zstd", marks=td.skip_if_no("zstandard")), ] ) def compression_only(request): """ Fixture for trying common compression types in compression tests excluding uncompressed case. """ return request.param @pytest.fixture(params=[True, False]) def writable(request): """ Fixture that an array is writable. """ return request.param @pytest.fixture(params=["inner", "outer", "left", "right"]) def join_type(request): """ Fixture for trying all types of join operations. """ return request.param @pytest.fixture(params=["nlargest", "nsmallest"]) def nselect_method(request): """ Fixture for trying all nselect methods. """ return request.param # ---------------------------------------------------------------- # Missing values & co. # ---------------------------------------------------------------- @pytest.fixture(params=tm.NULL_OBJECTS, ids=lambda x: type(x).__name__) def nulls_fixture(request): """ Fixture for each null type in pandas. """ return request.param nulls_fixture2 = nulls_fixture # Generate cartesian product of nulls_fixture @pytest.fixture(params=[None, np.nan, pd.NaT]) def unique_nulls_fixture(request): """ Fixture for each null type in pandas, each null type exactly once. """ return request.param # Generate cartesian product of unique_nulls_fixture: unique_nulls_fixture2 = unique_nulls_fixture @pytest.fixture(params=tm.NP_NAT_OBJECTS, ids=lambda x: type(x).__name__) def np_nat_fixture(request): """ Fixture for each NaT type in numpy. """ return request.param # Generate cartesian product of np_nat_fixture: np_nat_fixture2 = np_nat_fixture # ---------------------------------------------------------------- # Classes # ---------------------------------------------------------------- @pytest.fixture(params=[DataFrame, Series]) def frame_or_series(request): """ Fixture to parametrize over DataFrame and Series. """ return request.param @pytest.fixture(params=[Index, Series], ids=["index", "series"]) def index_or_series(request): """ Fixture to parametrize over Index and Series, made necessary by a mypy bug, giving an error: List item 0 has incompatible type "Type[Series]"; expected "Type[PandasObject]" See GH#29725 """ return request.param # Generate cartesian product of index_or_series fixture: index_or_series2 = index_or_series @pytest.fixture(params=[Index, Series, pd.array], ids=["index", "series", "array"]) def index_or_series_or_array(request): """ Fixture to parametrize over Index, Series, and ExtensionArray """ return request.param @pytest.fixture(params=[Index, Series, DataFrame, pd.array], ids=lambda x: x.__name__) def box_with_array(request): """ Fixture to test behavior for Index, Series, DataFrame, and pandas Array classes """ return request.param box_with_array2 = box_with_array @pytest.fixture def dict_subclass(): """ Fixture for a dictionary subclass. """ class TestSubDict(dict): def __init__(self, *args, **kwargs) -> None: dict.__init__(self, *args, **kwargs) return TestSubDict @pytest.fixture def non_dict_mapping_subclass(): """ Fixture for a non-mapping dictionary subclass. """ class TestNonDictMapping(abc.Mapping): def __init__(self, underlying_dict) -> None: self._data = underlying_dict def __getitem__(self, key): return self._data.__getitem__(key) def __iter__(self) -> Iterator: return self._data.__iter__() def __len__(self) -> int: return self._data.__len__() return TestNonDictMapping # ---------------------------------------------------------------- # Indices # ---------------------------------------------------------------- @pytest.fixture def multiindex_year_month_day_dataframe_random_data(): """ DataFrame with 3 level MultiIndex (year, month, day) covering first 100 business days from 2000-01-01 with random data """ tdf = tm.makeTimeDataFrame(100) ymd = tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum() # use int64 Index, to make sure things work ymd.index = ymd.index.set_levels([lev.astype("i8") for lev in ymd.index.levels]) ymd.index.set_names(["year", "month", "day"], inplace=True) return ymd @pytest.fixture def lexsorted_two_level_string_multiindex() -> MultiIndex: """ 2-level MultiIndex, lexsorted, with string names. """ return MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["first", "second"], ) @pytest.fixture def multiindex_dataframe_random_data( lexsorted_two_level_string_multiindex, ) -> DataFrame: """DataFrame with 2 level MultiIndex with random data""" index = lexsorted_two_level_string_multiindex return DataFrame( np.random.randn(10, 3), index=index, columns=Index(["A", "B", "C"], name="exp") ) def _create_multiindex(): """ MultiIndex used to test the general functionality of this object """ # See Also: tests.multi.conftest.idx major_axis = Index(["foo", "bar", "baz", "qux"]) minor_axis = Index(["one", "two"]) major_codes = np.array([0, 0, 1, 2, 3, 3]) minor_codes = np.array([0, 1, 0, 1, 0, 1]) index_names = ["first", "second"] return MultiIndex( levels=[major_axis, minor_axis], codes=[major_codes, minor_codes], names=index_names, verify_integrity=False, ) def _create_mi_with_dt64tz_level(): """ MultiIndex with a level that is a tzaware DatetimeIndex. """ # GH#8367 round trip with pickle return MultiIndex.from_product( [[1, 2], ["a", "b"], pd.date_range("20130101", periods=3, tz="US/Eastern")], names=["one", "two", "three"], ) indices_dict = { "string": tm.makeStringIndex(100), "datetime": tm.makeDateIndex(100), "datetime-tz": tm.makeDateIndex(100, tz="US/Pacific"), "period": tm.makePeriodIndex(100), "timedelta": tm.makeTimedeltaIndex(100), "range": tm.makeRangeIndex(100), "int8": tm.makeIntIndex(100, dtype="int8"), "int16": tm.makeIntIndex(100, dtype="int16"), "int32": tm.makeIntIndex(100, dtype="int32"), "int64": tm.makeIntIndex(100, dtype="int64"), "uint8": tm.makeUIntIndex(100, dtype="uint8"), "uint16": tm.makeUIntIndex(100, dtype="uint16"), "uint32": tm.makeUIntIndex(100, dtype="uint32"), "uint64": tm.makeUIntIndex(100, dtype="uint64"), "float32": tm.makeFloatIndex(100, dtype="float32"), "float64": tm.makeFloatIndex(100, dtype="float64"), "bool-object": tm.makeBoolIndex(10).astype(object), "bool-dtype": Index(np.random.randn(10) < 0), "complex64": tm.makeNumericIndex(100, dtype="float64").astype("complex64"), "complex128": tm.makeNumericIndex(100, dtype="float64").astype("complex128"), "categorical": tm.makeCategoricalIndex(100), "interval": tm.makeIntervalIndex(100), "empty": Index([]), "tuples": MultiIndex.from_tuples(zip(["foo", "bar", "baz"], [1, 2, 3])), "mi-with-dt64tz-level": _create_mi_with_dt64tz_level(), "multi": _create_multiindex(), "repeats": Index([0, 0, 1, 1, 2, 2]), "nullable_int": Index(np.arange(100), dtype="Int64"), "nullable_uint": Index(np.arange(100), dtype="UInt16"), "nullable_float": Index(np.arange(100), dtype="Float32"), "nullable_bool": Index(np.arange(100).astype(bool), dtype="boolean"), "string-python": Index(pd.array(tm.makeStringIndex(100), dtype="string[python]")), } if has_pyarrow: idx = Index(pd.array(tm.makeStringIndex(100), dtype="string[pyarrow]")) indices_dict["string-pyarrow"] = idx @pytest.fixture(params=indices_dict.keys()) def index(request): """ Fixture for many "simple" kinds of indices. These indices are unlikely to cover corner cases, e.g. - no names - no NaTs/NaNs - no values near implementation bounds - ... """ # copy to avoid mutation, e.g. setting .name return indices_dict[request.param].copy() # Needed to generate cartesian product of indices index_fixture2 = index @pytest.fixture( params=[ key for key, value in indices_dict.items() if not isinstance(value, MultiIndex) ] ) def index_flat(request): """ index fixture, but excluding MultiIndex cases. """ key = request.param return indices_dict[key].copy() # Alias so we can test with cartesian product of index_flat index_flat2 = index_flat @pytest.fixture( params=[ key for key, value in indices_dict.items() if not ( key.startswith("int") or key.startswith("uint") or key.startswith("float") or key in ["range", "empty", "repeats", "bool-dtype"] ) and not isinstance(value, MultiIndex) ] ) def index_with_missing(request): """ Fixture for indices with missing values. Integer-dtype and empty cases are excluded because they cannot hold missing values. MultiIndex is excluded because isna() is not defined for MultiIndex. """ # GH 35538. Use deep copy to avoid illusive bug on np-dev # GHA pipeline that writes into indices_dict despite copy ind = indices_dict[request.param].copy(deep=True) vals = ind.values if request.param in ["tuples", "mi-with-dt64tz-level", "multi"]: # For setting missing values in the top level of MultiIndex vals = ind.tolist() vals[0] = (None,) + vals[0][1:] vals[-1] = (None,) + vals[-1][1:] return MultiIndex.from_tuples(vals) else: vals[0] = None vals[-1] = None return type(ind)(vals) # ---------------------------------------------------------------- # Series' # ---------------------------------------------------------------- @pytest.fixture def string_series() -> Series: """ Fixture for Series of floats with Index of unique strings """ s = tm.makeStringSeries() s.name = "series" return s @pytest.fixture def object_series() -> Series: """ Fixture for Series of dtype object with Index of unique strings """ s = tm.makeObjectSeries() s.name = "objects" return s @pytest.fixture def datetime_series() -> Series: """ Fixture for Series of floats with DatetimeIndex """ s = tm.makeTimeSeries() s.name = "ts" return s def _create_series(index): """Helper for the _series dict""" size = len(index) data = np.random.randn(size) return Series(data, index=index, name="a", copy=False) _series = { f"series-with-{index_id}-index": _create_series(index) for index_id, index in indices_dict.items() } @pytest.fixture def series_with_simple_index(index) -> Series: """ Fixture for tests on series with changing types of indices. """ return _create_series(index) @pytest.fixture def series_with_multilevel_index() -> Series: """ Fixture with a Series with a 2-level MultiIndex. """ arrays = [ ["bar", "bar", "baz", "baz", "qux", "qux", "foo", "foo"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] tuples = zip(*arrays) index = MultiIndex.from_tuples(tuples) data = np.random.randn(8) ser = Series(data, index=index) ser[3] = np.NaN return ser _narrow_series = { f"{dtype.__name__}-series": tm.make_rand_series(name="a", dtype=dtype) for dtype in tm.NARROW_NP_DTYPES } _index_or_series_objs = {**indices_dict, **_series, **_narrow_series} @pytest.fixture(params=_index_or_series_objs.keys()) def index_or_series_obj(request): """ Fixture for tests on indexes, series and series with a narrow dtype copy to avoid mutation, e.g. setting .name """ return _index_or_series_objs[request.param].copy(deep=True) # ---------------------------------------------------------------- # DataFrames # ---------------------------------------------------------------- @pytest.fixture def int_frame() -> DataFrame: """ Fixture for DataFrame of ints with index of unique strings Columns are ['A', 'B', 'C', 'D'] A B C D vpBeWjM651 1 0 1 0 5JyxmrP1En -1 0 0 0 qEDaoD49U2 -1 1 0 0 m66TkTfsFe 0 0 0 0 EHPaNzEUFm -1 0 -1 0 fpRJCevQhi 2 0 0 0 OlQvnmfi3Q 0 0 -2 0 ... .. .. .. .. uB1FPlz4uP 0 0 0 1 EcSe6yNzCU 0 0 -1 0 L50VudaiI8 -1 1 -2 0 y3bpw4nwIp 0 -1 0 0 H0RdLLwrCT 1 1 0 0 rY82K0vMwm 0 0 0 0 1OPIUjnkjk 2 0 0 0 [30 rows x 4 columns] """ return DataFrame(tm.getSeriesData()).astype("int64") @pytest.fixture def datetime_frame() -> DataFrame: """ Fixture for DataFrame of floats with DatetimeIndex Columns are ['A', 'B', 'C', 'D'] A B C D 2000-01-03 -1.122153 0.468535 0.122226 1.693711 2000-01-04 0.189378 0.486100 0.007864 -1.216052 2000-01-05 0.041401 -0.835752 -0.035279 -0.414357 2000-01-06 0.430050 0.894352 0.090719 0.036939 2000-01-07 -0.620982 -0.668211 -0.706153 1.466335 2000-01-10 -0.752633 0.328434 -0.815325 0.699674 2000-01-11 -2.236969 0.615737 -0.829076 -1.196106 ... ... ... ... ... 2000-02-03 1.642618 -0.579288 0.046005 1.385249 2000-02-04 -0.544873 -1.160962 -0.284071 -1.418351 2000-02-07 -2.656149 -0.601387 1.410148 0.444150 2000-02-08 -1.201881 -1.289040 0.772992 -1.445300 2000-02-09 1.377373 0.398619 1.008453 -0.928207 2000-02-10 0.473194 -0.636677 0.984058 0.511519 2000-02-11 -0.965556 0.408313 -1.312844 -0.381948 [30 rows x 4 columns] """ return DataFrame(tm.getTimeSeriesData()) @pytest.fixture def float_frame() -> DataFrame: """ Fixture for DataFrame of floats with index of unique strings Columns are ['A', 'B', 'C', 'D']. A B C D P7GACiRnxd -0.465578 -0.361863 0.886172 -0.053465 qZKh6afn8n -0.466693 -0.373773 0.266873 1.673901 tkp0r6Qble 0.148691 -0.059051 0.174817 1.598433 wP70WOCtv8 0.133045 -0.581994 -0.992240 0.261651 M2AeYQMnCz -1.207959 -0.185775 0.588206 0.563938 QEPzyGDYDo -0.381843 -0.758281 0.502575 -0.565053 r78Jwns6dn -0.653707 0.883127 0.682199 0.206159 ... ... ... ... ... IHEGx9NO0T -0.277360 0.113021 -1.018314 0.196316 lPMj8K27FA -1.313667 -0.604776 -1.305618 -0.863999 qa66YMWQa5 1.110525 0.475310 -0.747865 0.032121 yOa0ATsmcE -0.431457 0.067094 0.096567 -0.264962 65znX3uRNG 1.528446 0.160416 -0.109635 -0.032987 eCOBvKqf3e 0.235281 1.622222 0.781255 0.392871 xSucinXxuV -1.263557 0.252799 -0.552247 0.400426 [30 rows x 4 columns] """ return DataFrame(tm.getSeriesData()) @pytest.fixture def mixed_type_frame() -> DataFrame: """ Fixture for DataFrame of float/int/string columns with RangeIndex Columns are ['a', 'b', 'c', 'float32', 'int32']. """ return DataFrame( { "a": 1.0, "b": 2, "c": "foo", "float32": np.array([1.0] * 10, dtype="float32"), "int32": np.array([1] * 10, dtype="int32"), }, index=np.arange(10), ) @pytest.fixture def rand_series_with_duplicate_datetimeindex() -> Series: """ Fixture for Series with a DatetimeIndex that has duplicates. """ dates = [ datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 5), ] return Series(np.random.randn(len(dates)), index=dates) # ---------------------------------------------------------------- # Scalars # ---------------------------------------------------------------- @pytest.fixture( params=[ (Interval(left=0, right=5), IntervalDtype("int64", "right")), (Interval(left=0.1, right=0.5), IntervalDtype("float64", "right")), (Period("2012-01", freq="M"), "period[M]"), (Period("2012-02-01", freq="D"), "period[D]"), ( Timestamp("2011-01-01", tz="US/Eastern"), DatetimeTZDtype(tz="US/Eastern"), ), (Timedelta(seconds=500), "timedelta64[ns]"), ] ) def ea_scalar_and_dtype(request): return request.param # ---------------------------------------------------------------- # Operators & Operations # ---------------------------------------------------------------- _all_arithmetic_operators = [ "__add__", "__radd__", "__sub__", "__rsub__", "__mul__", "__rmul__", "__floordiv__", "__rfloordiv__", "__truediv__", "__rtruediv__", "__pow__", "__rpow__", "__mod__", "__rmod__", ] @pytest.fixture(params=_all_arithmetic_operators) def all_arithmetic_operators(request): """ Fixture for dunder names for common arithmetic operations. """ return request.param @pytest.fixture( params=[ operator.add, ops.radd, operator.sub, ops.rsub, operator.mul, ops.rmul, operator.truediv, ops.rtruediv, operator.floordiv, ops.rfloordiv, operator.mod, ops.rmod, operator.pow, ops.rpow, operator.eq, operator.ne, operator.lt, operator.le, operator.gt, operator.ge, operator.and_, ops.rand_, operator.xor, ops.rxor, operator.or_, ops.ror_, ] ) def all_binary_operators(request): """ Fixture for operator and roperator arithmetic, comparison, and logical ops. """ return request.param @pytest.fixture( params=[ operator.add, ops.radd, operator.sub, ops.rsub, operator.mul, ops.rmul, operator.truediv, ops.rtruediv, operator.floordiv, ops.rfloordiv, operator.mod, ops.rmod, operator.pow, ops.rpow, ] ) def all_arithmetic_functions(request): """ Fixture for operator and roperator arithmetic functions. Notes ----- This includes divmod and rdivmod, whereas all_arithmetic_operators does not. """ return request.param _all_numeric_reductions = [ "count", "sum", "max", "min", "mean", "prod", "std", "var", "median", "kurt", "skew", "sem", ] @pytest.fixture(params=_all_numeric_reductions) def all_numeric_reductions(request): """ Fixture for numeric reduction names. """ return request.param _all_boolean_reductions = ["all", "any"] @pytest.fixture(params=_all_boolean_reductions) def all_boolean_reductions(request): """ Fixture for boolean reduction names. """ return request.param _all_reductions = _all_numeric_reductions + _all_boolean_reductions @pytest.fixture(params=_all_reductions) def all_reductions(request): """ Fixture for all (boolean + numeric) reduction names. """ return request.param @pytest.fixture( params=[ operator.eq, operator.ne, operator.gt, operator.ge, operator.lt, operator.le, ] ) def comparison_op(request): """ Fixture for operator module comparison functions. """ return request.param @pytest.fixture(params=["__le__", "__lt__", "__ge__", "__gt__"]) def compare_operators_no_eq_ne(request): """ Fixture for dunder names for compare operations except == and != * >= * > * < * <= """ return request.param @pytest.fixture( params=["__and__", "__rand__", "__or__", "__ror__", "__xor__", "__rxor__"] ) def all_logical_operators(request): """ Fixture for dunder names for common logical operations * | * & * ^ """ return request.param _all_numeric_accumulations = ["cumsum", "cumprod", "cummin", "cummax"] @pytest.fixture(params=_all_numeric_accumulations) def all_numeric_accumulations(request): """ Fixture for numeric accumulation names """ return request.param # ---------------------------------------------------------------- # Data sets/files # ---------------------------------------------------------------- @pytest.fixture def strict_data_files(pytestconfig): """ Returns the configuration for the test setting `--strict-data-files`. """ return pytestconfig.getoption("--strict-data-files") @pytest.fixture def datapath(strict_data_files: str) -> Callable[..., str]: """ Get the path to a data file. Parameters ---------- path : str Path to the file, relative to ``pandas/tests/`` Returns ------- path including ``pandas/tests``. Raises ------ ValueError If the path doesn't exist and the --strict-data-files option is set. """ BASE_PATH = os.path.join(os.path.dirname(__file__), "tests") def deco(*args): path = os.path.join(BASE_PATH, *args) if not os.path.exists(path): if strict_data_files: raise ValueError( f"Could not find file {path} and --strict-data-files is set." ) pytest.skip(f"Could not find {path}.") return path return deco @pytest.fixture def iris(datapath) -> DataFrame: """ The iris dataset as a DataFrame. """ return pd.read_csv(datapath("io", "data", "csv", "iris.csv")) # ---------------------------------------------------------------- # Time zones # ---------------------------------------------------------------- TIMEZONES = [ None, "UTC", "US/Eastern", "Asia/Tokyo", "dateutil/US/Pacific", "dateutil/Asia/Singapore", "+01:15", "-02:15", "UTC+01:15", "UTC-02:15", tzutc(), tzlocal(), FixedOffset(300), FixedOffset(0), FixedOffset(-300), timezone.utc, timezone(timedelta(hours=1)), timezone(timedelta(hours=-1), name="foo"), ] if zoneinfo is not None: TIMEZONES.extend([zoneinfo.ZoneInfo("US/Pacific"), zoneinfo.ZoneInfo("UTC")]) TIMEZONE_IDS = [repr(i) for i in TIMEZONES] @td.parametrize_fixture_doc(str(TIMEZONE_IDS)) @pytest.fixture(params=TIMEZONES, ids=TIMEZONE_IDS) def tz_naive_fixture(request): """ Fixture for trying timezones including default (None): {0} """ return request.param @td.parametrize_fixture_doc(str(TIMEZONE_IDS[1:])) @pytest.fixture(params=TIMEZONES[1:], ids=TIMEZONE_IDS[1:]) def tz_aware_fixture(request): """ Fixture for trying explicit timezones: {0} """ return request.param # Generate cartesian product of tz_aware_fixture: tz_aware_fixture2 = tz_aware_fixture _UTCS = ["utc", "dateutil/UTC", utc, tzutc(), timezone.utc] if zoneinfo is not None: _UTCS.append(zoneinfo.ZoneInfo("UTC")) @pytest.fixture(params=_UTCS) def utc_fixture(request): """ Fixture to provide variants of UTC timezone strings and tzinfo objects. """ return request.param utc_fixture2 = utc_fixture # ---------------------------------------------------------------- # Dtypes # ---------------------------------------------------------------- @pytest.fixture(params=tm.STRING_DTYPES) def string_dtype(request): """ Parametrized fixture for string dtypes. * str * 'str' * 'U' """ return request.param @pytest.fixture( params=[ "string[python]", pytest.param("string[pyarrow]", marks=td.skip_if_no("pyarrow")), ] ) def nullable_string_dtype(request): """ Parametrized fixture for string dtypes. * 'string[python]' * 'string[pyarrow]' """ return request.param @pytest.fixture( params=[ "python", pytest.param("pyarrow", marks=td.skip_if_no("pyarrow")), ] ) def string_storage(request): """ Parametrized fixture for pd.options.mode.string_storage. * 'python' * 'pyarrow' """ return request.param @pytest.fixture( params=[ "numpy_nullable", pytest.param("pyarrow", marks=td.skip_if_no("pyarrow")), ] ) def dtype_backend(request): """ Parametrized fixture for pd.options.mode.string_storage. * 'python' * 'pyarrow' """ return request.param # Alias so we can test with cartesian product of string_storage string_storage2 = string_storage @pytest.fixture(params=tm.BYTES_DTYPES) def bytes_dtype(request): """ Parametrized fixture for bytes dtypes. * bytes * 'bytes' """ return request.param @pytest.fixture(params=tm.OBJECT_DTYPES) def object_dtype(request): """ Parametrized fixture for object dtypes. * object * 'object' """ return request.param @pytest.fixture( params=[ "object", "string[python]", pytest.param("string[pyarrow]", marks=td.skip_if_no("pyarrow")), ] ) def any_string_dtype(request): """ Parametrized fixture for string dtypes. * 'object' * 'string[python]' * 'string[pyarrow]' """ return request.param @pytest.fixture(params=tm.DATETIME64_DTYPES) def datetime64_dtype(request): """ Parametrized fixture for datetime64 dtypes. * 'datetime64[ns]' * 'M8[ns]' """ return request.param @pytest.fixture(params=tm.TIMEDELTA64_DTYPES) def timedelta64_dtype(request): """ Parametrized fixture for timedelta64 dtypes. * 'timedelta64[ns]' * 'm8[ns]' """ return request.param @pytest.fixture def fixed_now_ts() -> Timestamp: """ Fixture emits fixed Timestamp.now() """ return Timestamp( year=2021, month=1, day=1, hour=12, minute=4, second=13, microsecond=22 ) @pytest.fixture(params=tm.FLOAT_NUMPY_DTYPES) def float_numpy_dtype(request): """ Parameterized fixture for float dtypes. * float * 'float32' * 'float64' """ return request.param @pytest.fixture(params=tm.FLOAT_EA_DTYPES) def float_ea_dtype(request): """ Parameterized fixture for float dtypes. * 'Float32' * 'Float64' """ return request.param @pytest.fixture(params=tm.ALL_FLOAT_DTYPES) def any_float_dtype(request): """ Parameterized fixture for float dtypes. * float * 'float32' * 'float64' * 'Float32' * 'Float64' """ return request.param @pytest.fixture(params=tm.COMPLEX_DTYPES) def complex_dtype(request): """ Parameterized fixture for complex dtypes. * complex * 'complex64' * 'complex128' """ return request.param @pytest.fixture(params=tm.SIGNED_INT_NUMPY_DTYPES) def any_signed_int_numpy_dtype(request): """ Parameterized fixture for signed integer dtypes. * int * 'int8' * 'int16' * 'int32' * 'int64' """ return request.param @pytest.fixture(params=tm.UNSIGNED_INT_NUMPY_DTYPES) def any_unsigned_int_numpy_dtype(request): """ Parameterized fixture for unsigned integer dtypes. * 'uint8' * 'uint16' * 'uint32' * 'uint64' """ return request.param @pytest.fixture(params=tm.ALL_INT_NUMPY_DTYPES) def any_int_numpy_dtype(request): """ Parameterized fixture for any integer dtype. * int * 'int8' * 'uint8' * 'int16' * 'uint16' * 'int32' * 'uint32' * 'int64' * 'uint64' """ return request.param @pytest.fixture(params=tm.ALL_INT_EA_DTYPES) def any_int_ea_dtype(request): """ Parameterized fixture for any nullable integer dtype. * 'UInt8' * 'Int8' * 'UInt16' * 'Int16' * 'UInt32' * 'Int32' * 'UInt64' * 'Int64' """ return request.param @pytest.fixture(params=tm.ALL_INT_DTYPES) def any_int_dtype(request): """ Parameterized fixture for any nullable integer dtype. * int * 'int8' * 'uint8' * 'int16' * 'uint16' * 'int32' * 'uint32' * 'int64' * 'uint64' * 'UInt8' * 'Int8' * 'UInt16' * 'Int16' * 'UInt32' * 'Int32' * 'UInt64' * 'Int64' """ return request.param @pytest.fixture(params=tm.ALL_INT_EA_DTYPES + tm.FLOAT_EA_DTYPES) def any_numeric_ea_dtype(request): """ Parameterized fixture for any nullable integer dtype and any float ea dtypes. * 'UInt8' * 'Int8' * 'UInt16' * 'Int16' * 'UInt32' * 'Int32' * 'UInt64' * 'Int64' * 'Float32' * 'Float64' """ return request.param # Unsupported operand types for + ("List[Union[str, ExtensionDtype, dtype[Any], # Type[object]]]" and "List[str]") @pytest.fixture( params=tm.ALL_INT_EA_DTYPES + tm.FLOAT_EA_DTYPES + tm.ALL_INT_PYARROW_DTYPES_STR_REPR + tm.FLOAT_PYARROW_DTYPES_STR_REPR # type: ignore[operator] ) def any_numeric_ea_and_arrow_dtype(request): """ Parameterized fixture for any nullable integer dtype and any float ea dtypes. * 'UInt8' * 'Int8' * 'UInt16' * 'Int16' * 'UInt32' * 'Int32' * 'UInt64' * 'Int64' * 'Float32' * 'Float64' * 'uint8[pyarrow]' * 'int8[pyarrow]' * 'uint16[pyarrow]' * 'int16[pyarrow]' * 'uint32[pyarrow]' * 'int32[pyarrow]' * 'uint64[pyarrow]' * 'int64[pyarrow]' * 'float32[pyarrow]' * 'float64[pyarrow]' """ return request.param @pytest.fixture(params=tm.SIGNED_INT_EA_DTYPES) def any_signed_int_ea_dtype(request): """ Parameterized fixture for any signed nullable integer dtype. * 'Int8' * 'Int16' * 'Int32' * 'Int64' """ return request.param @pytest.fixture(params=tm.ALL_REAL_NUMPY_DTYPES) def any_real_numpy_dtype(request): """ Parameterized fixture for any (purely) real numeric dtype. * int * 'int8' * 'uint8' * 'int16' * 'uint16' * 'int32' * 'uint32' * 'int64' * 'uint64' * float * 'float32' * 'float64' """ return request.param @pytest.fixture(params=tm.ALL_REAL_DTYPES) def any_real_numeric_dtype(request): """ Parameterized fixture for any (purely) real numeric dtype. * int * 'int8' * 'uint8' * 'int16' * 'uint16' * 'int32' * 'uint32' * 'int64' * 'uint64' * float * 'float32' * 'float64' and associated ea dtypes. """ return request.param @pytest.fixture(params=tm.ALL_NUMPY_DTYPES) def any_numpy_dtype(request): """ Parameterized fixture for all numpy dtypes. * bool * 'bool' * int * 'int8' * 'uint8' * 'int16' * 'uint16' * 'int32' * 'uint32' * 'int64' * 'uint64' * float * 'float32' * 'float64' * complex * 'complex64' * 'complex128' * str * 'str' * 'U' * bytes * 'bytes' * 'datetime64[ns]' * 'M8[ns]' * 'timedelta64[ns]' * 'm8[ns]' * object * 'object' """ return request.param @pytest.fixture(params=tm.ALL_NUMERIC_DTYPES) def any_numeric_dtype(request): """ Parameterized fixture for all numeric dtypes. * int * 'int8' * 'uint8' * 'int16' * 'uint16' * 'int32' * 'uint32' * 'int64' * 'uint64' * float * 'float32' * 'float64' * complex * 'complex64' * 'complex128' * 'UInt8' * 'Int8' * 'UInt16' * 'Int16' * 'UInt32' * 'Int32' * 'UInt64' * 'Int64' * 'Float32' * 'Float64' """ return request.param # categoricals are handled separately _any_skipna_inferred_dtype = [ ("string", ["a", np.nan, "c"]), ("string", ["a", pd.NA, "c"]), ("mixed", ["a", pd.NaT, "c"]), # pd.NaT not considered valid by is_string_array ("bytes", [b"a", np.nan, b"c"]), ("empty", [np.nan, np.nan, np.nan]), ("empty", []), ("mixed-integer", ["a", np.nan, 2]), ("mixed", ["a", np.nan, 2.0]), ("floating", [1.0, np.nan, 2.0]), ("integer", [1, np.nan, 2]), ("mixed-integer-float", [1, np.nan, 2.0]), ("decimal", [Decimal(1), np.nan, Decimal(2)]), ("boolean", [True, np.nan, False]), ("boolean", [True, pd.NA, False]), ("datetime64", [np.datetime64("2013-01-01"), np.nan, np.datetime64("2018-01-01")]), ("datetime", [Timestamp("20130101"), np.nan, Timestamp("20180101")]), ("date", [date(2013, 1, 1), np.nan, date(2018, 1, 1)]), # The following two dtypes are commented out due to GH 23554 # ('complex', [1 + 1j, np.nan, 2 + 2j]), # ('timedelta64', [np.timedelta64(1, 'D'), # np.nan, np.timedelta64(2, 'D')]), ("timedelta", [timedelta(1), np.nan, timedelta(2)]), ("time", [time(1), np.nan, time(2)]), ("period", [Period(2013), pd.NaT, Period(2018)]), ("interval", [Interval(0, 1), np.nan, Interval(0, 2)]), ] ids, _ = zip(*_any_skipna_inferred_dtype) # use inferred type as fixture-id @pytest.fixture(params=_any_skipna_inferred_dtype, ids=ids) def any_skipna_inferred_dtype(request): """ Fixture for all inferred dtypes from _libs.lib.infer_dtype The covered (inferred) types are: * 'string' * 'empty' * 'bytes' * 'mixed' * 'mixed-integer' * 'mixed-integer-float' * 'floating' * 'integer' * 'decimal' * 'boolean' * 'datetime64' * 'datetime' * 'date' * 'timedelta' * 'time' * 'period' * 'interval' Returns ------- inferred_dtype : str The string for the inferred dtype from _libs.lib.infer_dtype values : np.ndarray An array of object dtype that will be inferred to have `inferred_dtype` Examples -------- >>> from pandas._libs import lib >>> >>> def test_something(any_skipna_inferred_dtype): ... inferred_dtype, values = any_skipna_inferred_dtype ... # will pass ... assert lib.infer_dtype(values, skipna=True) == inferred_dtype """ inferred_dtype, values = request.param values = np.array(values, dtype=object) # object dtype to avoid casting # correctness of inference tested in tests/dtypes/test_inference.py return inferred_dtype, values # ---------------------------------------------------------------- # Misc # ---------------------------------------------------------------- @pytest.fixture def ip(): """ Get an instance of IPython.InteractiveShell. Will raise a skip if IPython is not installed. """ pytest.importorskip("IPython", minversion="6.0.0") from IPython.core.interactiveshell import InteractiveShell # GH#35711 make sure sqlite history file handle is not leaked from traitlets.config import Config # isort:skip c = Config() c.HistoryManager.hist_file = ":memory:" return InteractiveShell(config=c) @pytest.fixture(params=["bsr", "coo", "csc", "csr", "dia", "dok", "lil"]) def spmatrix(request): """ Yields scipy sparse matrix classes. """ from scipy import sparse return getattr(sparse, request.param + "_matrix") @pytest.fixture( params=[ getattr(pd.offsets, o) for o in pd.offsets.__all__ if issubclass(getattr(pd.offsets, o), pd.offsets.Tick) and o != "Tick" ] ) def tick_classes(request): """ Fixture for Tick based datetime offsets available for a time series. """ return request.param @pytest.fixture(params=[None, lambda x: x]) def sort_by_key(request): """ Simple fixture for testing keys in sorting methods. Tests None (no key) and the identity key. """ return request.param @pytest.fixture() def fsspectest(): pytest.importorskip("fsspec") from fsspec import register_implementation from fsspec.implementations.memory import MemoryFileSystem from fsspec.registry import _registry as registry class TestMemoryFS(MemoryFileSystem): protocol = "testmem" test = [None] def __init__(self, **kwargs) -> None: self.test[0] = kwargs.pop("test", None) super().__init__(**kwargs) register_implementation("testmem", TestMemoryFS, clobber=True) yield TestMemoryFS() registry.pop("testmem", None) TestMemoryFS.test[0] = None TestMemoryFS.store.clear() @pytest.fixture( params=[ ("foo", None, None), ("Egon", "Venkman", None), ("NCC1701D", "NCC1701D", "NCC1701D"), # possibly-matching NAs (np.nan, np.nan, np.nan), (np.nan, pd.NaT, None), (np.nan, pd.NA, None), (pd.NA, pd.NA, pd.NA), ] ) def names(request) -> tuple[Hashable, Hashable, Hashable]: """ A 3-tuple of names, the first two for operands, the last for a result. """ return request.param @pytest.fixture(params=[tm.setitem, tm.loc, tm.iloc]) def indexer_sli(request): """ Parametrize over __setitem__, loc.__setitem__, iloc.__setitem__ """ return request.param @pytest.fixture(params=[tm.loc, tm.iloc]) def indexer_li(request): """ Parametrize over loc.__getitem__, iloc.__getitem__ """ return request.param @pytest.fixture(params=[tm.setitem, tm.iloc]) def indexer_si(request): """ Parametrize over __setitem__, iloc.__setitem__ """ return request.param @pytest.fixture(params=[tm.setitem, tm.loc]) def indexer_sl(request): """ Parametrize over __setitem__, loc.__setitem__ """ return request.param @pytest.fixture(params=[tm.at, tm.loc]) def indexer_al(request): """ Parametrize over at.__setitem__, loc.__setitem__ """ return request.param @pytest.fixture(params=[tm.iat, tm.iloc]) def indexer_ial(request): """ Parametrize over iat.__setitem__, iloc.__setitem__ """ return request.param @pytest.fixture def using_array_manager() -> bool: """ Fixture to check if the array manager is being used. """ return pd.options.mode.data_manager == "array" @pytest.fixture def using_copy_on_write() -> bool: """ Fixture to check if Copy-on-Write is enabled. """ return pd.options.mode.copy_on_write and pd.options.mode.data_manager == "block" warsaws = ["Europe/Warsaw", "dateutil/Europe/Warsaw"] if zoneinfo is not None: warsaws.append(zoneinfo.ZoneInfo("Europe/Warsaw")) @pytest.fixture(params=warsaws) def warsaw(request) -> str: """ tzinfo for Europe/Warsaw using pytz, dateutil, or zoneinfo. """ return request.param