import numpy as np import pytest from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd import pandas._testing as tm from pandas.core.arrays import DatetimeArray from pandas.core.arrays.datetimes import _sequence_to_dt64ns class TestDatetimeArrayConstructor: def test_from_sequence_invalid_type(self): mi = pd.MultiIndex.from_product([np.arange(5), np.arange(5)]) with pytest.raises(TypeError, match="Cannot create a DatetimeArray"): DatetimeArray._from_sequence(mi) def test_only_1dim_accepted(self): arr = np.array([0, 1, 2, 3], dtype="M8[h]").astype("M8[ns]") with pytest.raises(ValueError, match="Only 1-dimensional"): # 3-dim, we allow 2D to sneak in for ops purposes GH#29853 DatetimeArray(arr.reshape(2, 2, 1)) with pytest.raises(ValueError, match="Only 1-dimensional"): # 0-dim DatetimeArray(arr[[0]].squeeze()) def test_freq_validation(self): # GH#24623 check that invalid instances cannot be created with the # public constructor arr = np.arange(5, dtype=np.int64) * 3600 * 10**9 msg = ( "Inferred frequency H from passed values does not " "conform to passed frequency W-SUN" ) with pytest.raises(ValueError, match=msg): DatetimeArray(arr, freq="W") @pytest.mark.parametrize( "meth", [ DatetimeArray._from_sequence, _sequence_to_dt64ns, pd.to_datetime, pd.DatetimeIndex, ], ) def test_mixing_naive_tzaware_raises(self, meth): # GH#24569 arr = np.array([pd.Timestamp("2000"), pd.Timestamp("2000", tz="CET")]) msg = ( "Cannot mix tz-aware with tz-naive values|" "Tz-aware datetime.datetime cannot be converted " "to datetime64 unless utc=True" ) for obj in [arr, arr[::-1]]: # check that we raise regardless of whether naive is found # before aware or vice-versa with pytest.raises(ValueError, match=msg): meth(obj) def test_from_pandas_array(self): arr = pd.array(np.arange(5, dtype=np.int64)) * 3600 * 10**9 result = DatetimeArray._from_sequence(arr)._with_freq("infer") expected = pd.date_range("1970-01-01", periods=5, freq="H")._data tm.assert_datetime_array_equal(result, expected) def test_mismatched_timezone_raises(self): arr = DatetimeArray( np.array(["2000-01-01T06:00:00"], dtype="M8[ns]"), dtype=DatetimeTZDtype(tz="US/Central"), ) dtype = DatetimeTZDtype(tz="US/Eastern") msg = r"dtype=datetime64\[ns.*\] does not match data dtype datetime64\[ns.*\]" with pytest.raises(TypeError, match=msg): DatetimeArray(arr, dtype=dtype) # also with mismatched tzawareness with pytest.raises(TypeError, match=msg): DatetimeArray(arr, dtype=np.dtype("M8[ns]")) with pytest.raises(TypeError, match=msg): DatetimeArray(arr.tz_localize(None), dtype=arr.dtype) def test_non_array_raises(self): with pytest.raises(ValueError, match="list"): DatetimeArray([1, 2, 3]) def test_bool_dtype_raises(self): arr = np.array([1, 2, 3], dtype="bool") msg = "Unexpected value for 'dtype': 'bool'. Must be" with pytest.raises(ValueError, match=msg): DatetimeArray(arr) msg = r"dtype bool cannot be converted to datetime64\[ns\]" with pytest.raises(TypeError, match=msg): DatetimeArray._from_sequence(arr) with pytest.raises(TypeError, match=msg): _sequence_to_dt64ns(arr) with pytest.raises(TypeError, match=msg): pd.DatetimeIndex(arr) with pytest.raises(TypeError, match=msg): pd.to_datetime(arr) def test_incorrect_dtype_raises(self): with pytest.raises(ValueError, match="Unexpected value for 'dtype'."): DatetimeArray(np.array([1, 2, 3], dtype="i8"), dtype="category") def test_freq_infer_raises(self): with pytest.raises(ValueError, match="Frequency inference"): DatetimeArray(np.array([1, 2, 3], dtype="i8"), freq="infer") def test_copy(self): data = np.array([1, 2, 3], dtype="M8[ns]") arr = DatetimeArray(data, copy=False) assert arr._ndarray is data arr = DatetimeArray(data, copy=True) assert arr._ndarray is not data @pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"]) def test_numpy_datetime_unit(self, unit): data = np.array([1, 2, 3], dtype=f"M8[{unit}]") arr = DatetimeArray(data) assert arr.unit == unit assert arr[0].unit == unit class TestSequenceToDT64NS: def test_tz_dtype_mismatch_raises(self): arr = DatetimeArray._from_sequence( ["2000"], dtype=DatetimeTZDtype(tz="US/Central") ) with pytest.raises(TypeError, match="data is already tz-aware"): DatetimeArray._from_sequence_not_strict( arr, dtype=DatetimeTZDtype(tz="UTC") ) def test_tz_dtype_matches(self): dtype = DatetimeTZDtype(tz="US/Central") arr = DatetimeArray._from_sequence(["2000"], dtype=dtype) result = DatetimeArray._from_sequence_not_strict(arr, dtype=dtype) tm.assert_equal(arr, result) @pytest.mark.parametrize("order", ["F", "C"]) def test_2d(self, order): dti = pd.date_range("2016-01-01", periods=6, tz="US/Pacific") arr = np.array(dti, dtype=object).reshape(3, 2) if order == "F": arr = arr.T res = _sequence_to_dt64ns(arr) expected = _sequence_to_dt64ns(arr.ravel()) tm.assert_numpy_array_equal(res[0].ravel(), expected[0]) assert res[1] == expected[1] assert res[2] == expected[2] res = DatetimeArray._from_sequence(arr) expected = DatetimeArray._from_sequence(arr.ravel()).reshape(arr.shape) tm.assert_datetime_array_equal(res, expected)