""" This module tests the functionality of StringArray and ArrowStringArray. Tests for the str accessors are in pandas/tests/strings/test_string_array.py """ import numpy as np import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_dtype_equal import pandas as pd import pandas._testing as tm from pandas.core.arrays.string_arrow import ArrowStringArray from pandas.util.version import Version @pytest.fixture def dtype(string_storage): """Fixture giving StringDtype from parametrized 'string_storage'""" return pd.StringDtype(storage=string_storage) @pytest.fixture def cls(dtype): """Fixture giving array type from parametrized 'dtype'""" return dtype.construct_array_type() def test_repr(dtype): df = pd.DataFrame({"A": pd.array(["a", pd.NA, "b"], dtype=dtype)}) expected = " A\n0 a\n1 \n2 b" assert repr(df) == expected expected = "0 a\n1 \n2 b\nName: A, dtype: string" assert repr(df.A) == expected arr_name = "ArrowStringArray" if dtype.storage == "pyarrow" else "StringArray" expected = f"<{arr_name}>\n['a', , 'b']\nLength: 3, dtype: string" assert repr(df.A.array) == expected def test_none_to_nan(cls): a = cls._from_sequence(["a", None, "b"]) assert a[1] is not None assert a[1] is pd.NA def test_setitem_validates(cls): arr = cls._from_sequence(["a", "b"]) if cls is pd.arrays.StringArray: msg = "Cannot set non-string value '10' into a StringArray." else: msg = "Scalar must be NA or str" with pytest.raises(TypeError, match=msg): arr[0] = 10 if cls is pd.arrays.StringArray: msg = "Must provide strings." else: msg = "Scalar must be NA or str" with pytest.raises(TypeError, match=msg): arr[:] = np.array([1, 2]) def test_setitem_with_scalar_string(dtype): # is_float_dtype considers some strings, like 'd', to be floats # which can cause issues. arr = pd.array(["a", "c"], dtype=dtype) arr[0] = "d" expected = pd.array(["d", "c"], dtype=dtype) tm.assert_extension_array_equal(arr, expected) def test_setitem_with_array_with_missing(dtype): # ensure that when setting with an array of values, we don't mutate the # array `value` in __setitem__(self, key, value) arr = pd.array(["a", "b", "c"], dtype=dtype) value = np.array(["A", None]) value_orig = value.copy() arr[[0, 1]] = value expected = pd.array(["A", pd.NA, "c"], dtype=dtype) tm.assert_extension_array_equal(arr, expected) tm.assert_numpy_array_equal(value, value_orig) def test_astype_roundtrip(dtype): ser = pd.Series(pd.date_range("2000", periods=12)) ser[0] = None casted = ser.astype(dtype) assert is_dtype_equal(casted.dtype, dtype) result = casted.astype("datetime64[ns]") tm.assert_series_equal(result, ser) def test_add(dtype): a = pd.Series(["a", "b", "c", None, None], dtype=dtype) b = pd.Series(["x", "y", None, "z", None], dtype=dtype) result = a + b expected = pd.Series(["ax", "by", None, None, None], dtype=dtype) tm.assert_series_equal(result, expected) result = a.add(b) tm.assert_series_equal(result, expected) result = a.radd(b) expected = pd.Series(["xa", "yb", None, None, None], dtype=dtype) tm.assert_series_equal(result, expected) result = a.add(b, fill_value="-") expected = pd.Series(["ax", "by", "c-", "-z", None], dtype=dtype) tm.assert_series_equal(result, expected) def test_add_2d(dtype, request): if dtype.storage == "pyarrow": reason = "Failed: DID NOT RAISE " mark = pytest.mark.xfail(raises=None, reason=reason) request.node.add_marker(mark) a = pd.array(["a", "b", "c"], dtype=dtype) b = np.array([["a", "b", "c"]], dtype=object) with pytest.raises(ValueError, match="3 != 1"): a + b s = pd.Series(a) with pytest.raises(ValueError, match="3 != 1"): s + b def test_add_sequence(dtype): a = pd.array(["a", "b", None, None], dtype=dtype) other = ["x", None, "y", None] result = a + other expected = pd.array(["ax", None, None, None], dtype=dtype) tm.assert_extension_array_equal(result, expected) result = other + a expected = pd.array(["xa", None, None, None], dtype=dtype) tm.assert_extension_array_equal(result, expected) def test_mul(dtype, request): if dtype.storage == "pyarrow": reason = "unsupported operand type(s) for *: 'ArrowStringArray' and 'int'" mark = pytest.mark.xfail(raises=NotImplementedError, reason=reason) request.node.add_marker(mark) a = pd.array(["a", "b", None], dtype=dtype) result = a * 2 expected = pd.array(["aa", "bb", None], dtype=dtype) tm.assert_extension_array_equal(result, expected) result = 2 * a tm.assert_extension_array_equal(result, expected) @pytest.mark.xfail(reason="GH-28527") def test_add_strings(dtype): arr = pd.array(["a", "b", "c", "d"], dtype=dtype) df = pd.DataFrame([["t", "y", "v", "w"]]) assert arr.__add__(df) is NotImplemented result = arr + df expected = pd.DataFrame([["at", "by", "cv", "dw"]]).astype(dtype) tm.assert_frame_equal(result, expected) result = df + arr expected = pd.DataFrame([["ta", "yb", "vc", "wd"]]).astype(dtype) tm.assert_frame_equal(result, expected) @pytest.mark.xfail(reason="GH-28527") def test_add_frame(dtype): arr = pd.array(["a", "b", np.nan, np.nan], dtype=dtype) df = pd.DataFrame([["x", np.nan, "y", np.nan]]) assert arr.__add__(df) is NotImplemented result = arr + df expected = pd.DataFrame([["ax", np.nan, np.nan, np.nan]]).astype(dtype) tm.assert_frame_equal(result, expected) result = df + arr expected = pd.DataFrame([["xa", np.nan, np.nan, np.nan]]).astype(dtype) tm.assert_frame_equal(result, expected) def test_comparison_methods_scalar(comparison_op, dtype): op_name = f"__{comparison_op.__name__}__" a = pd.array(["a", None, "c"], dtype=dtype) other = "a" result = getattr(a, op_name)(other) expected_dtype = "boolean[pyarrow]" if dtype.storage == "pyarrow" else "boolean" expected = np.array([getattr(item, op_name)(other) for item in a], dtype=object) expected = pd.array(expected, dtype=expected_dtype) tm.assert_extension_array_equal(result, expected) def test_comparison_methods_scalar_pd_na(comparison_op, dtype): op_name = f"__{comparison_op.__name__}__" a = pd.array(["a", None, "c"], dtype=dtype) result = getattr(a, op_name)(pd.NA) expected_dtype = "boolean[pyarrow]" if dtype.storage == "pyarrow" else "boolean" expected = pd.array([None, None, None], dtype=expected_dtype) tm.assert_extension_array_equal(result, expected) def test_comparison_methods_scalar_not_string(comparison_op, dtype): op_name = f"__{comparison_op.__name__}__" a = pd.array(["a", None, "c"], dtype=dtype) other = 42 if op_name not in ["__eq__", "__ne__"]: with pytest.raises(TypeError, match="not supported between"): getattr(a, op_name)(other) return result = getattr(a, op_name)(other) expected_data = {"__eq__": [False, None, False], "__ne__": [True, None, True]}[ op_name ] expected_dtype = "boolean[pyarrow]" if dtype.storage == "pyarrow" else "boolean" expected = pd.array(expected_data, dtype=expected_dtype) tm.assert_extension_array_equal(result, expected) def test_comparison_methods_array(comparison_op, dtype): op_name = f"__{comparison_op.__name__}__" a = pd.array(["a", None, "c"], dtype=dtype) other = [None, None, "c"] result = getattr(a, op_name)(other) expected_dtype = "boolean[pyarrow]" if dtype.storage == "pyarrow" else "boolean" expected = np.full(len(a), fill_value=None, dtype="object") expected[-1] = getattr(other[-1], op_name)(a[-1]) expected = pd.array(expected, dtype=expected_dtype) tm.assert_extension_array_equal(result, expected) result = getattr(a, op_name)(pd.NA) expected = pd.array([None, None, None], dtype=expected_dtype) tm.assert_extension_array_equal(result, expected) def test_constructor_raises(cls): if cls is pd.arrays.StringArray: msg = "StringArray requires a sequence of strings or pandas.NA" else: msg = "Unsupported type '' for ArrowExtensionArray" with pytest.raises(ValueError, match=msg): cls(np.array(["a", "b"], dtype="S1")) with pytest.raises(ValueError, match=msg): cls(np.array([])) if cls is pd.arrays.StringArray: # GH#45057 np.nan and None do NOT raise, as they are considered valid NAs # for string dtype cls(np.array(["a", np.nan], dtype=object)) cls(np.array(["a", None], dtype=object)) else: with pytest.raises(ValueError, match=msg): cls(np.array(["a", np.nan], dtype=object)) with pytest.raises(ValueError, match=msg): cls(np.array(["a", None], dtype=object)) with pytest.raises(ValueError, match=msg): cls(np.array(["a", pd.NaT], dtype=object)) with pytest.raises(ValueError, match=msg): cls(np.array(["a", np.datetime64("NaT", "ns")], dtype=object)) with pytest.raises(ValueError, match=msg): cls(np.array(["a", np.timedelta64("NaT", "ns")], dtype=object)) @pytest.mark.parametrize("na", [np.nan, np.float64("nan"), float("nan"), None, pd.NA]) def test_constructor_nan_like(na): expected = pd.arrays.StringArray(np.array(["a", pd.NA])) tm.assert_extension_array_equal( pd.arrays.StringArray(np.array(["a", na], dtype="object")), expected ) @pytest.mark.parametrize("copy", [True, False]) def test_from_sequence_no_mutate(copy, cls, request): nan_arr = np.array(["a", np.nan], dtype=object) expected_input = nan_arr.copy() na_arr = np.array(["a", pd.NA], dtype=object) result = cls._from_sequence(nan_arr, copy=copy) if cls is ArrowStringArray: import pyarrow as pa expected = cls(pa.array(na_arr, type=pa.string(), from_pandas=True)) else: expected = cls(na_arr) tm.assert_extension_array_equal(result, expected) tm.assert_numpy_array_equal(nan_arr, expected_input) def test_astype_int(dtype): arr = pd.array(["1", "2", "3"], dtype=dtype) result = arr.astype("int64") expected = np.array([1, 2, 3], dtype="int64") tm.assert_numpy_array_equal(result, expected) arr = pd.array(["1", pd.NA, "3"], dtype=dtype) msg = r"int\(\) argument must be a string, a bytes-like object or a( real)? number" with pytest.raises(TypeError, match=msg): arr.astype("int64") def test_astype_nullable_int(dtype): arr = pd.array(["1", pd.NA, "3"], dtype=dtype) result = arr.astype("Int64") expected = pd.array([1, pd.NA, 3], dtype="Int64") tm.assert_extension_array_equal(result, expected) def test_astype_float(dtype, any_float_dtype): # Don't compare arrays (37974) ser = pd.Series(["1.1", pd.NA, "3.3"], dtype=dtype) result = ser.astype(any_float_dtype) expected = pd.Series([1.1, np.nan, 3.3], dtype=any_float_dtype) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.xfail(reason="Not implemented StringArray.sum") def test_reduce(skipna, dtype): arr = pd.Series(["a", "b", "c"], dtype=dtype) result = arr.sum(skipna=skipna) assert result == "abc" @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.xfail(reason="Not implemented StringArray.sum") def test_reduce_missing(skipna, dtype): arr = pd.Series([None, "a", None, "b", "c", None], dtype=dtype) result = arr.sum(skipna=skipna) if skipna: assert result == "abc" else: assert pd.isna(result) @pytest.mark.parametrize("method", ["min", "max"]) @pytest.mark.parametrize("skipna", [True, False]) def test_min_max(method, skipna, dtype, request): arr = pd.Series(["a", "b", "c", None], dtype=dtype) result = getattr(arr, method)(skipna=skipna) if skipna: expected = "a" if method == "min" else "c" assert result == expected else: assert result is pd.NA @pytest.mark.parametrize("method", ["min", "max"]) @pytest.mark.parametrize("box", [pd.Series, pd.array]) def test_min_max_numpy(method, box, dtype, request): if dtype.storage == "pyarrow" and box is pd.array: if box is pd.array: reason = "'<=' not supported between instances of 'str' and 'NoneType'" else: reason = "'ArrowStringArray' object has no attribute 'max'" mark = pytest.mark.xfail(raises=TypeError, reason=reason) request.node.add_marker(mark) arr = box(["a", "b", "c", None], dtype=dtype) result = getattr(np, method)(arr) expected = "a" if method == "min" else "c" assert result == expected def test_fillna_args(dtype, request): # GH 37987 arr = pd.array(["a", pd.NA], dtype=dtype) res = arr.fillna(value="b") expected = pd.array(["a", "b"], dtype=dtype) tm.assert_extension_array_equal(res, expected) res = arr.fillna(value=np.str_("b")) expected = pd.array(["a", "b"], dtype=dtype) tm.assert_extension_array_equal(res, expected) if dtype.storage == "pyarrow": msg = "Invalid value '1' for dtype string" else: msg = "Cannot set non-string value '1' into a StringArray." with pytest.raises(TypeError, match=msg): arr.fillna(value=1) def test_arrow_array(dtype): # protocol added in 0.15.0 pa = pytest.importorskip("pyarrow") data = pd.array(["a", "b", "c"], dtype=dtype) arr = pa.array(data) expected = pa.array(list(data), type=pa.string(), from_pandas=True) if dtype.storage == "pyarrow" and Version(pa.__version__) <= Version("11.0.0"): expected = pa.chunked_array(expected) assert arr.equals(expected) @td.skip_if_no("pyarrow") def test_arrow_roundtrip(dtype, string_storage2): # roundtrip possible from arrow 1.0.0 import pyarrow as pa data = pd.array(["a", "b", None], dtype=dtype) df = pd.DataFrame({"a": data}) table = pa.table(df) assert table.field("a").type == "string" with pd.option_context("string_storage", string_storage2): result = table.to_pandas() assert isinstance(result["a"].dtype, pd.StringDtype) expected = df.astype(f"string[{string_storage2}]") tm.assert_frame_equal(result, expected) # ensure the missing value is represented by NA and not np.nan or None assert result.loc[2, "a"] is pd.NA @td.skip_if_no("pyarrow") def test_arrow_load_from_zero_chunks(dtype, string_storage2): # GH-41040 import pyarrow as pa data = pd.array([], dtype=dtype) df = pd.DataFrame({"a": data}) table = pa.table(df) assert table.field("a").type == "string" # Instantiate the same table with no chunks at all table = pa.table([pa.chunked_array([], type=pa.string())], schema=table.schema) with pd.option_context("string_storage", string_storage2): result = table.to_pandas() assert isinstance(result["a"].dtype, pd.StringDtype) expected = df.astype(f"string[{string_storage2}]") tm.assert_frame_equal(result, expected) def test_value_counts_na(dtype): if getattr(dtype, "storage", "") == "pyarrow": exp_dtype = "int64[pyarrow]" else: exp_dtype = "Int64" arr = pd.array(["a", "b", "a", pd.NA], dtype=dtype) result = arr.value_counts(dropna=False) expected = pd.Series([2, 1, 1], index=arr[[0, 1, 3]], dtype=exp_dtype, name="count") tm.assert_series_equal(result, expected) result = arr.value_counts(dropna=True) expected = pd.Series([2, 1], index=arr[:2], dtype=exp_dtype, name="count") tm.assert_series_equal(result, expected) def test_value_counts_with_normalize(dtype): if getattr(dtype, "storage", "") == "pyarrow": exp_dtype = "double[pyarrow]" else: exp_dtype = "Float64" ser = pd.Series(["a", "b", "a", pd.NA], dtype=dtype) result = ser.value_counts(normalize=True) expected = pd.Series([2, 1], index=ser[:2], dtype=exp_dtype, name="proportion") / 3 tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "values, expected", [ (["a", "b", "c"], np.array([False, False, False])), (["a", "b", None], np.array([False, False, True])), ], ) def test_use_inf_as_na(values, expected, dtype): # https://github.com/pandas-dev/pandas/issues/33655 values = pd.array(values, dtype=dtype) with pd.option_context("mode.use_inf_as_na", True): result = values.isna() tm.assert_numpy_array_equal(result, expected) result = pd.Series(values).isna() expected = pd.Series(expected) tm.assert_series_equal(result, expected) result = pd.DataFrame(values).isna() expected = pd.DataFrame(expected) tm.assert_frame_equal(result, expected) def test_memory_usage(dtype): # GH 33963 if dtype.storage == "pyarrow": pytest.skip(f"not applicable for {dtype.storage}") series = pd.Series(["a", "b", "c"], dtype=dtype) assert 0 < series.nbytes <= series.memory_usage() < series.memory_usage(deep=True) @pytest.mark.parametrize("float_dtype", [np.float16, np.float32, np.float64]) def test_astype_from_float_dtype(float_dtype, dtype): # https://github.com/pandas-dev/pandas/issues/36451 ser = pd.Series([0.1], dtype=float_dtype) result = ser.astype(dtype) expected = pd.Series(["0.1"], dtype=dtype) tm.assert_series_equal(result, expected) def test_to_numpy_returns_pdna_default(dtype): arr = pd.array(["a", pd.NA, "b"], dtype=dtype) result = np.array(arr) expected = np.array(["a", pd.NA, "b"], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_to_numpy_na_value(dtype, nulls_fixture): na_value = nulls_fixture arr = pd.array(["a", pd.NA, "b"], dtype=dtype) result = arr.to_numpy(na_value=na_value) expected = np.array(["a", na_value, "b"], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_isin(dtype, fixed_now_ts): s = pd.Series(["a", "b", None], dtype=dtype) result = s.isin(["a", "c"]) expected = pd.Series([True, False, False]) tm.assert_series_equal(result, expected) result = s.isin(["a", pd.NA]) expected = pd.Series([True, False, True]) tm.assert_series_equal(result, expected) result = s.isin([]) expected = pd.Series([False, False, False]) tm.assert_series_equal(result, expected) result = s.isin(["a", fixed_now_ts]) expected = pd.Series([True, False, False]) tm.assert_series_equal(result, expected) def test_setitem_scalar_with_mask_validation(dtype): # https://github.com/pandas-dev/pandas/issues/47628 # setting None with a boolean mask (through _putmaks) should still result # in pd.NA values in the underlying array ser = pd.Series(["a", "b", "c"], dtype=dtype) mask = np.array([False, True, False]) ser[mask] = None assert ser.array[1] is pd.NA # for other non-string we should also raise an error ser = pd.Series(["a", "b", "c"], dtype=dtype) if type(ser.array) is pd.arrays.StringArray: msg = "Cannot set non-string value" else: msg = "Scalar must be NA or str" with pytest.raises(TypeError, match=msg): ser[mask] = 1 def test_from_numpy_str(dtype): vals = ["a", "b", "c"] arr = np.array(vals, dtype=np.str_) result = pd.array(arr, dtype=dtype) expected = pd.array(vals, dtype=dtype) tm.assert_extension_array_equal(result, expected) def test_tolist(dtype): vals = ["a", "b", "c"] arr = pd.array(vals, dtype=dtype) result = arr.tolist() expected = vals tm.assert_equal(result, expected)