from datetime import ( date, datetime, time, timedelta, ) import numpy as np import pytest import pandas as pd from pandas import ( DatetimeIndex, Index, Timestamp, bdate_range, date_range, notna, ) import pandas._testing as tm from pandas.tseries.frequencies import to_offset START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestGetItem: def test_getitem_slice_keeps_name(self): # GH4226 st = Timestamp("2013-07-01 00:00:00", tz="America/Los_Angeles") et = Timestamp("2013-07-02 00:00:00", tz="America/Los_Angeles") dr = date_range(st, et, freq="H", name="timebucket") assert dr[1:].name == dr.name def test_getitem(self): idx1 = date_range("2011-01-01", "2011-01-31", freq="D", name="idx") idx2 = date_range( "2011-01-01", "2011-01-31", freq="D", tz="Asia/Tokyo", name="idx" ) for idx in [idx1, idx2]: result = idx[0] assert result == Timestamp("2011-01-01", tz=idx.tz) result = idx[0:5] expected = date_range( "2011-01-01", "2011-01-05", freq="D", tz=idx.tz, name="idx" ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx[0:10:2] expected = date_range( "2011-01-01", "2011-01-09", freq="2D", tz=idx.tz, name="idx" ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx[-20:-5:3] expected = date_range( "2011-01-12", "2011-01-24", freq="3D", tz=idx.tz, name="idx" ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx[4::-1] expected = DatetimeIndex( ["2011-01-05", "2011-01-04", "2011-01-03", "2011-01-02", "2011-01-01"], freq="-1D", tz=idx.tz, name="idx", ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq @pytest.mark.parametrize("freq", ["B", "C"]) def test_dti_business_getitem(self, freq): rng = bdate_range(START, END, freq=freq) smaller = rng[:5] exp = DatetimeIndex(rng.view(np.ndarray)[:5], freq=freq) tm.assert_index_equal(smaller, exp) assert smaller.freq == exp.freq assert smaller.freq == rng.freq sliced = rng[::5] assert sliced.freq == to_offset(freq) * 5 fancy_indexed = rng[[4, 3, 2, 1, 0]] assert len(fancy_indexed) == 5 assert isinstance(fancy_indexed, DatetimeIndex) assert fancy_indexed.freq is None # 32-bit vs. 64-bit platforms assert rng[4] == rng[np.int_(4)] @pytest.mark.parametrize("freq", ["B", "C"]) def test_dti_business_getitem_matplotlib_hackaround(self, freq): rng = bdate_range(START, END, freq=freq) with pytest.raises(ValueError, match="Multi-dimensional indexing"): # GH#30588 multi-dimensional indexing deprecated rng[:, None] def test_getitem_int_list(self): dti = date_range(start="1/1/2005", end="12/1/2005", freq="M") dti2 = dti[[1, 3, 5]] v1 = dti2[0] v2 = dti2[1] v3 = dti2[2] assert v1 == Timestamp("2/28/2005") assert v2 == Timestamp("4/30/2005") assert v3 == Timestamp("6/30/2005") # getitem with non-slice drops freq assert dti2.freq is None class TestWhere: def test_where_doesnt_retain_freq(self): dti = date_range("20130101", periods=3, freq="D", name="idx") cond = [True, True, False] expected = DatetimeIndex([dti[0], dti[1], dti[0]], freq=None, name="idx") result = dti.where(cond, dti[::-1]) tm.assert_index_equal(result, expected) def test_where_other(self): # other is ndarray or Index i = date_range("20130101", periods=3, tz="US/Eastern") for arr in [np.nan, pd.NaT]: result = i.where(notna(i), other=arr) expected = i tm.assert_index_equal(result, expected) i2 = i.copy() i2 = Index([pd.NaT, pd.NaT] + i[2:].tolist()) result = i.where(notna(i2), i2) tm.assert_index_equal(result, i2) i2 = i.copy() i2 = Index([pd.NaT, pd.NaT] + i[2:].tolist()) result = i.where(notna(i2), i2._values) tm.assert_index_equal(result, i2) def test_where_invalid_dtypes(self): dti = date_range("20130101", periods=3, tz="US/Eastern") tail = dti[2:].tolist() i2 = Index([pd.NaT, pd.NaT] + tail) mask = notna(i2) # passing tz-naive ndarray to tzaware DTI result = dti.where(mask, i2.values) expected = Index([pd.NaT.asm8, pd.NaT.asm8] + tail, dtype=object) tm.assert_index_equal(result, expected) # passing tz-aware DTI to tznaive DTI naive = dti.tz_localize(None) result = naive.where(mask, i2) expected = Index([i2[0], i2[1]] + naive[2:].tolist(), dtype=object) tm.assert_index_equal(result, expected) pi = i2.tz_localize(None).to_period("D") result = dti.where(mask, pi) expected = Index([pi[0], pi[1]] + tail, dtype=object) tm.assert_index_equal(result, expected) tda = i2.asi8.view("timedelta64[ns]") result = dti.where(mask, tda) expected = Index([tda[0], tda[1]] + tail, dtype=object) assert isinstance(expected[0], np.timedelta64) tm.assert_index_equal(result, expected) result = dti.where(mask, i2.asi8) expected = Index([pd.NaT._value, pd.NaT._value] + tail, dtype=object) assert isinstance(expected[0], int) tm.assert_index_equal(result, expected) # non-matching scalar td = pd.Timedelta(days=4) result = dti.where(mask, td) expected = Index([td, td] + tail, dtype=object) assert expected[0] is td tm.assert_index_equal(result, expected) def test_where_mismatched_nat(self, tz_aware_fixture): tz = tz_aware_fixture dti = date_range("2013-01-01", periods=3, tz=tz) cond = np.array([True, False, True]) tdnat = np.timedelta64("NaT", "ns") expected = Index([dti[0], tdnat, dti[2]], dtype=object) assert expected[1] is tdnat result = dti.where(cond, tdnat) tm.assert_index_equal(result, expected) def test_where_tz(self): i = date_range("20130101", periods=3, tz="US/Eastern") result = i.where(notna(i)) expected = i tm.assert_index_equal(result, expected) i2 = i.copy() i2 = Index([pd.NaT, pd.NaT] + i[2:].tolist()) result = i.where(notna(i2)) expected = i2 tm.assert_index_equal(result, expected) class TestTake: def test_take_nan_first_datetime(self): index = DatetimeIndex([pd.NaT, Timestamp("20130101"), Timestamp("20130102")]) result = index.take([-1, 0, 1]) expected = DatetimeIndex([index[-1], index[0], index[1]]) tm.assert_index_equal(result, expected) def test_take(self): # GH#10295 idx1 = date_range("2011-01-01", "2011-01-31", freq="D", name="idx") idx2 = date_range( "2011-01-01", "2011-01-31", freq="D", tz="Asia/Tokyo", name="idx" ) for idx in [idx1, idx2]: result = idx.take([0]) assert result == Timestamp("2011-01-01", tz=idx.tz) result = idx.take([0, 1, 2]) expected = date_range( "2011-01-01", "2011-01-03", freq="D", tz=idx.tz, name="idx" ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx.take([0, 2, 4]) expected = date_range( "2011-01-01", "2011-01-05", freq="2D", tz=idx.tz, name="idx" ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx.take([7, 4, 1]) expected = date_range( "2011-01-08", "2011-01-02", freq="-3D", tz=idx.tz, name="idx" ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx.take([3, 2, 5]) expected = DatetimeIndex( ["2011-01-04", "2011-01-03", "2011-01-06"], freq=None, tz=idx.tz, name="idx", ) tm.assert_index_equal(result, expected) assert result.freq is None result = idx.take([-3, 2, 5]) expected = DatetimeIndex( ["2011-01-29", "2011-01-03", "2011-01-06"], freq=None, tz=idx.tz, name="idx", ) tm.assert_index_equal(result, expected) assert result.freq is None def test_take_invalid_kwargs(self): idx = date_range("2011-01-01", "2011-01-31", freq="D", name="idx") indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" with pytest.raises(TypeError, match=msg): idx.take(indices, foo=2) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): idx.take(indices, out=indices) msg = "the 'mode' parameter is not supported" with pytest.raises(ValueError, match=msg): idx.take(indices, mode="clip") # TODO: This method came from test_datetime; de-dup with version above @pytest.mark.parametrize("tz", [None, "US/Eastern", "Asia/Tokyo"]) def test_take2(self, tz): dates = [ datetime(2010, 1, 1, 14), datetime(2010, 1, 1, 15), datetime(2010, 1, 1, 17), datetime(2010, 1, 1, 21), ] idx = date_range( start="2010-01-01 09:00", end="2010-02-01 09:00", freq="H", tz=tz, name="idx", ) expected = DatetimeIndex(dates, freq=None, name="idx", tz=tz) taken1 = idx.take([5, 6, 8, 12]) taken2 = idx[[5, 6, 8, 12]] for taken in [taken1, taken2]: tm.assert_index_equal(taken, expected) assert isinstance(taken, DatetimeIndex) assert taken.freq is None assert taken.tz == expected.tz assert taken.name == expected.name def test_take_fill_value(self): # GH#12631 idx = DatetimeIndex(["2011-01-01", "2011-02-01", "2011-03-01"], name="xxx") result = idx.take(np.array([1, 0, -1])) expected = DatetimeIndex(["2011-02-01", "2011-01-01", "2011-03-01"], name="xxx") tm.assert_index_equal(result, expected) # fill_value result = idx.take(np.array([1, 0, -1]), fill_value=True) expected = DatetimeIndex(["2011-02-01", "2011-01-01", "NaT"], name="xxx") tm.assert_index_equal(result, expected) # allow_fill=False result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = DatetimeIndex(["2011-02-01", "2011-01-01", "2011-03-01"], name="xxx") tm.assert_index_equal(result, expected) msg = ( "When allow_fill=True and fill_value is not None, " "all indices must be >= -1" ) with pytest.raises(ValueError, match=msg): idx.take(np.array([1, 0, -2]), fill_value=True) with pytest.raises(ValueError, match=msg): idx.take(np.array([1, 0, -5]), fill_value=True) msg = "out of bounds" with pytest.raises(IndexError, match=msg): idx.take(np.array([1, -5])) def test_take_fill_value_with_timezone(self): idx = DatetimeIndex( ["2011-01-01", "2011-02-01", "2011-03-01"], name="xxx", tz="US/Eastern" ) result = idx.take(np.array([1, 0, -1])) expected = DatetimeIndex( ["2011-02-01", "2011-01-01", "2011-03-01"], name="xxx", tz="US/Eastern" ) tm.assert_index_equal(result, expected) # fill_value result = idx.take(np.array([1, 0, -1]), fill_value=True) expected = DatetimeIndex( ["2011-02-01", "2011-01-01", "NaT"], name="xxx", tz="US/Eastern" ) tm.assert_index_equal(result, expected) # allow_fill=False result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = DatetimeIndex( ["2011-02-01", "2011-01-01", "2011-03-01"], name="xxx", tz="US/Eastern" ) tm.assert_index_equal(result, expected) msg = ( "When allow_fill=True and fill_value is not None, " "all indices must be >= -1" ) with pytest.raises(ValueError, match=msg): idx.take(np.array([1, 0, -2]), fill_value=True) with pytest.raises(ValueError, match=msg): idx.take(np.array([1, 0, -5]), fill_value=True) msg = "out of bounds" with pytest.raises(IndexError, match=msg): idx.take(np.array([1, -5])) class TestGetLoc: def test_get_loc_key_unit_mismatch(self): idx = date_range("2000-01-01", periods=3) key = idx[1].as_unit("ms") loc = idx.get_loc(key) assert loc == 1 assert key in idx def test_get_loc_key_unit_mismatch_not_castable(self): dta = date_range("2000-01-01", periods=3)._data.astype("M8[s]") dti = DatetimeIndex(dta) key = dta[0].as_unit("ns") + pd.Timedelta(1) with pytest.raises( KeyError, match=r"Timestamp\('2000-01-01 00:00:00.000000001'\)" ): dti.get_loc(key) assert key not in dti def test_get_loc_time_obj(self): # time indexing idx = date_range("2000-01-01", periods=24, freq="H") result = idx.get_loc(time(12)) expected = np.array([12]) tm.assert_numpy_array_equal(result, expected, check_dtype=False) result = idx.get_loc(time(12, 30)) expected = np.array([]) tm.assert_numpy_array_equal(result, expected, check_dtype=False) def test_get_loc_time_obj2(self): # GH#8667 from pandas._libs.index import _SIZE_CUTOFF ns = _SIZE_CUTOFF + np.array([-100, 100], dtype=np.int64) key = time(15, 11, 30) start = key.hour * 3600 + key.minute * 60 + key.second step = 24 * 3600 for n in ns: idx = date_range("2014-11-26", periods=n, freq="S") ts = pd.Series(np.random.randn(n), index=idx) locs = np.arange(start, n, step, dtype=np.intp) result = ts.index.get_loc(key) tm.assert_numpy_array_equal(result, locs) tm.assert_series_equal(ts[key], ts.iloc[locs]) left, right = ts.copy(), ts.copy() left[key] *= -10 right.iloc[locs] *= -10 tm.assert_series_equal(left, right) def test_get_loc_time_nat(self): # GH#35114 # Case where key's total microseconds happens to match iNaT % 1e6 // 1000 tic = time(minute=12, second=43, microsecond=145224) dti = DatetimeIndex([pd.NaT]) loc = dti.get_loc(tic) expected = np.array([], dtype=np.intp) tm.assert_numpy_array_equal(loc, expected) def test_get_loc_nat(self): # GH#20464 index = DatetimeIndex(["1/3/2000", "NaT"]) assert index.get_loc(pd.NaT) == 1 assert index.get_loc(None) == 1 assert index.get_loc(np.nan) == 1 assert index.get_loc(pd.NA) == 1 assert index.get_loc(np.datetime64("NaT")) == 1 with pytest.raises(KeyError, match="NaT"): index.get_loc(np.timedelta64("NaT")) @pytest.mark.parametrize("key", [pd.Timedelta(0), pd.Timedelta(1), timedelta(0)]) def test_get_loc_timedelta_invalid_key(self, key): # GH#20464 dti = date_range("1970-01-01", periods=10) msg = "Cannot index DatetimeIndex with [Tt]imedelta" with pytest.raises(TypeError, match=msg): dti.get_loc(key) def test_get_loc_reasonable_key_error(self): # GH#1062 index = DatetimeIndex(["1/3/2000"]) with pytest.raises(KeyError, match="2000"): index.get_loc("1/1/2000") def test_get_loc_year_str(self): rng = date_range("1/1/2000", "1/1/2010") result = rng.get_loc("2009") expected = slice(3288, 3653) assert result == expected class TestContains: def test_dti_contains_with_duplicates(self): d = datetime(2011, 12, 5, 20, 30) ix = DatetimeIndex([d, d]) assert d in ix @pytest.mark.parametrize( "vals", [ [0, 1, 0], [0, 0, -1], [0, -1, -1], ["2015", "2015", "2016"], ["2015", "2015", "2014"], ], ) def test_contains_nonunique(self, vals): # GH#9512 idx = DatetimeIndex(vals) assert idx[0] in idx class TestGetIndexer: def test_get_indexer_date_objs(self): rng = date_range("1/1/2000", periods=20) result = rng.get_indexer(rng.map(lambda x: x.date())) expected = rng.get_indexer(rng) tm.assert_numpy_array_equal(result, expected) def test_get_indexer(self): idx = date_range("2000-01-01", periods=3) exp = np.array([0, 1, 2], dtype=np.intp) tm.assert_numpy_array_equal(idx.get_indexer(idx), exp) target = idx[0] + pd.to_timedelta(["-1 hour", "12 hours", "1 day 1 hour"]) tm.assert_numpy_array_equal( idx.get_indexer(target, "pad"), np.array([-1, 0, 1], dtype=np.intp) ) tm.assert_numpy_array_equal( idx.get_indexer(target, "backfill"), np.array([0, 1, 2], dtype=np.intp) ) tm.assert_numpy_array_equal( idx.get_indexer(target, "nearest"), np.array([0, 1, 1], dtype=np.intp) ) tm.assert_numpy_array_equal( idx.get_indexer(target, "nearest", tolerance=pd.Timedelta("1 hour")), np.array([0, -1, 1], dtype=np.intp), ) tol_raw = [ pd.Timedelta("1 hour"), pd.Timedelta("1 hour"), pd.Timedelta("1 hour").to_timedelta64(), ] tm.assert_numpy_array_equal( idx.get_indexer( target, "nearest", tolerance=[np.timedelta64(x) for x in tol_raw] ), np.array([0, -1, 1], dtype=np.intp), ) tol_bad = [ pd.Timedelta("2 hour").to_timedelta64(), pd.Timedelta("1 hour").to_timedelta64(), "foo", ] msg = "Could not convert 'foo' to NumPy timedelta" with pytest.raises(ValueError, match=msg): idx.get_indexer(target, "nearest", tolerance=tol_bad) with pytest.raises(ValueError, match="abbreviation w/o a number"): idx.get_indexer(idx[[0]], method="nearest", tolerance="foo") @pytest.mark.parametrize( "target", [ [date(2020, 1, 1), Timestamp("2020-01-02")], [Timestamp("2020-01-01"), date(2020, 1, 2)], ], ) def test_get_indexer_mixed_dtypes(self, target): # https://github.com/pandas-dev/pandas/issues/33741 values = DatetimeIndex([Timestamp("2020-01-01"), Timestamp("2020-01-02")]) result = values.get_indexer(target) expected = np.array([0, 1], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "target, positions", [ ([date(9999, 1, 1), Timestamp("2020-01-01")], [-1, 0]), ([Timestamp("2020-01-01"), date(9999, 1, 1)], [0, -1]), ([date(9999, 1, 1), date(9999, 1, 1)], [-1, -1]), ], ) def test_get_indexer_out_of_bounds_date(self, target, positions): values = DatetimeIndex([Timestamp("2020-01-01"), Timestamp("2020-01-02")]) result = values.get_indexer(target) expected = np.array(positions, dtype=np.intp) tm.assert_numpy_array_equal(result, expected) def test_get_indexer_pad_requires_monotonicity(self): rng = date_range("1/1/2000", "3/1/2000", freq="B") # neither monotonic increasing or decreasing rng2 = rng[[1, 0, 2]] msg = "index must be monotonic increasing or decreasing" with pytest.raises(ValueError, match=msg): rng2.get_indexer(rng, method="pad") class TestMaybeCastSliceBound: def test_maybe_cast_slice_bounds_empty(self): # GH#14354 empty_idx = date_range(freq="1H", periods=0, end="2015") right = empty_idx._maybe_cast_slice_bound("2015-01-02", "right") exp = Timestamp("2015-01-02 23:59:59.999999999") assert right == exp left = empty_idx._maybe_cast_slice_bound("2015-01-02", "left") exp = Timestamp("2015-01-02 00:00:00") assert left == exp def test_maybe_cast_slice_duplicate_monotonic(self): # https://github.com/pandas-dev/pandas/issues/16515 idx = DatetimeIndex(["2017", "2017"]) result = idx._maybe_cast_slice_bound("2017-01-01", "left") expected = Timestamp("2017-01-01") assert result == expected class TestGetSliceBounds: @pytest.mark.parametrize("box", [date, datetime, Timestamp]) @pytest.mark.parametrize("side, expected", [("left", 4), ("right", 5)]) def test_get_slice_bounds_datetime_within( self, box, side, expected, tz_aware_fixture ): # GH 35690 tz = tz_aware_fixture index = bdate_range("2000-01-03", "2000-02-11").tz_localize(tz) key = box(year=2000, month=1, day=7) if tz is not None: with pytest.raises(TypeError, match="Cannot compare tz-naive"): # GH#36148 we require tzawareness-compat as of 2.0 index.get_slice_bound(key, side=side) else: result = index.get_slice_bound(key, side=side) assert result == expected @pytest.mark.parametrize("box", [datetime, Timestamp]) @pytest.mark.parametrize("side", ["left", "right"]) @pytest.mark.parametrize("year, expected", [(1999, 0), (2020, 30)]) def test_get_slice_bounds_datetime_outside( self, box, side, year, expected, tz_aware_fixture ): # GH 35690 tz = tz_aware_fixture index = bdate_range("2000-01-03", "2000-02-11").tz_localize(tz) key = box(year=year, month=1, day=7) if tz is not None: with pytest.raises(TypeError, match="Cannot compare tz-naive"): # GH#36148 we require tzawareness-compat as of 2.0 index.get_slice_bound(key, side=side) else: result = index.get_slice_bound(key, side=side) assert result == expected @pytest.mark.parametrize("box", [datetime, Timestamp]) def test_slice_datetime_locs(self, box, tz_aware_fixture): # GH 34077 tz = tz_aware_fixture index = DatetimeIndex(["2010-01-01", "2010-01-03"]).tz_localize(tz) key = box(2010, 1, 1) if tz is not None: with pytest.raises(TypeError, match="Cannot compare tz-naive"): # GH#36148 we require tzawareness-compat as of 2.0 index.slice_locs(key, box(2010, 1, 2)) else: result = index.slice_locs(key, box(2010, 1, 2)) expected = (0, 1) assert result == expected class TestIndexerBetweenTime: def test_indexer_between_time(self): # GH#11818 rng = date_range("1/1/2000", "1/5/2000", freq="5min") msg = r"Cannot convert arg \[datetime\.datetime\(2010, 1, 2, 1, 0\)\] to a time" with pytest.raises(ValueError, match=msg): rng.indexer_between_time(datetime(2010, 1, 2, 1), datetime(2010, 1, 2, 5)) @pytest.mark.parametrize("unit", ["us", "ms", "s"]) def test_indexer_between_time_non_nano(self, unit): # For simple cases like this, the non-nano indexer_between_time # should match the nano result rng = date_range("1/1/2000", "1/5/2000", freq="5min") arr_nano = rng._data._ndarray arr = arr_nano.astype(f"M8[{unit}]") dta = type(rng._data)._simple_new(arr, dtype=arr.dtype) dti = DatetimeIndex(dta) assert dti.dtype == arr.dtype tic = time(1, 25) toc = time(2, 29) result = dti.indexer_between_time(tic, toc) expected = rng.indexer_between_time(tic, toc) tm.assert_numpy_array_equal(result, expected) # case with non-zero micros in arguments tic = time(1, 25, 0, 45678) toc = time(2, 29, 0, 1234) result = dti.indexer_between_time(tic, toc) expected = rng.indexer_between_time(tic, toc) tm.assert_numpy_array_equal(result, expected)