import warnings import numpy as np import pytest from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( Index, MultiIndex, ) import pandas._testing as tm def test_drop(idx): dropped = idx.drop([("foo", "two"), ("qux", "one")]) index = MultiIndex.from_tuples([("foo", "two"), ("qux", "one")]) dropped2 = idx.drop(index) expected = idx[[0, 2, 3, 5]] tm.assert_index_equal(dropped, expected) tm.assert_index_equal(dropped2, expected) dropped = idx.drop(["bar"]) expected = idx[[0, 1, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = idx.drop("foo") expected = idx[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) index = MultiIndex.from_tuples([("bar", "two")]) with pytest.raises(KeyError, match=r"^15$"): idx.drop([("bar", "two")]) with pytest.raises(KeyError, match=r"^15$"): idx.drop(index) with pytest.raises(KeyError, match=r"^'two'$"): idx.drop(["foo", "two"]) # partially correct argument mixed_index = MultiIndex.from_tuples([("qux", "one"), ("bar", "two")]) with pytest.raises(KeyError, match=r"^15$"): idx.drop(mixed_index) # error='ignore' dropped = idx.drop(index, errors="ignore") expected = idx[[0, 1, 2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = idx.drop(mixed_index, errors="ignore") expected = idx[[0, 1, 2, 3, 5]] tm.assert_index_equal(dropped, expected) dropped = idx.drop(["foo", "two"], errors="ignore") expected = idx[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) # mixed partial / full drop dropped = idx.drop(["foo", ("qux", "one")]) expected = idx[[2, 3, 5]] tm.assert_index_equal(dropped, expected) # mixed partial / full drop / error='ignore' mixed_index = ["foo", ("qux", "one"), "two"] with pytest.raises(KeyError, match=r"^'two'$"): idx.drop(mixed_index) dropped = idx.drop(mixed_index, errors="ignore") expected = idx[[2, 3, 5]] tm.assert_index_equal(dropped, expected) def test_droplevel_with_names(idx): index = idx[idx.get_loc("foo")] dropped = index.droplevel(0) assert dropped.name == "second" index = MultiIndex( levels=[Index(range(4)), Index(range(4)), Index(range(4))], codes=[ np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array([0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0]), ], names=["one", "two", "three"], ) dropped = index.droplevel(0) assert dropped.names == ("two", "three") dropped = index.droplevel("two") expected = index.droplevel(1) assert dropped.equals(expected) def test_droplevel_list(): index = MultiIndex( levels=[Index(range(4)), Index(range(4)), Index(range(4))], codes=[ np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array([0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0]), ], names=["one", "two", "three"], ) dropped = index[:2].droplevel(["three", "one"]) expected = index[:2].droplevel(2).droplevel(0) assert dropped.equals(expected) dropped = index[:2].droplevel([]) expected = index[:2] assert dropped.equals(expected) msg = ( "Cannot remove 3 levels from an index with 3 levels: " "at least one level must be left" ) with pytest.raises(ValueError, match=msg): index[:2].droplevel(["one", "two", "three"]) with pytest.raises(KeyError, match="'Level four not found'"): index[:2].droplevel(["one", "four"]) def test_drop_not_lexsorted(): # GH 12078 # define the lexsorted version of the multi-index tuples = [("a", ""), ("b1", "c1"), ("b2", "c2")] lexsorted_mi = MultiIndex.from_tuples(tuples, names=["b", "c"]) assert lexsorted_mi._is_lexsorted() # and the not-lexsorted version df = pd.DataFrame( columns=["a", "b", "c", "d"], data=[[1, "b1", "c1", 3], [1, "b2", "c2", 4]] ) df = df.pivot_table(index="a", columns=["b", "c"], values="d") df = df.reset_index() not_lexsorted_mi = df.columns assert not not_lexsorted_mi._is_lexsorted() # compare the results tm.assert_index_equal(lexsorted_mi, not_lexsorted_mi) with tm.assert_produces_warning(PerformanceWarning): tm.assert_index_equal(lexsorted_mi.drop("a"), not_lexsorted_mi.drop("a")) def test_drop_with_nan_in_index(nulls_fixture): # GH#18853 mi = MultiIndex.from_tuples([("blah", nulls_fixture)], names=["name", "date"]) msg = r"labels \[Timestamp\('2001-01-01 00:00:00'\)\] not found in level" with pytest.raises(KeyError, match=msg): mi.drop(pd.Timestamp("2001"), level="date") def test_drop_with_non_monotonic_duplicates(): # GH#33494 mi = MultiIndex.from_tuples([(1, 2), (2, 3), (1, 2)]) with warnings.catch_warnings(): warnings.simplefilter("ignore", PerformanceWarning) result = mi.drop((1, 2)) expected = MultiIndex.from_tuples([(2, 3)]) tm.assert_index_equal(result, expected) def test_single_level_drop_partially_missing_elements(): # GH 37820 mi = MultiIndex.from_tuples([(1, 2), (2, 2), (3, 2)]) msg = r"labels \[4\] not found in level" with pytest.raises(KeyError, match=msg): mi.drop(4, level=0) with pytest.raises(KeyError, match=msg): mi.drop([1, 4], level=0) msg = r"labels \[nan\] not found in level" with pytest.raises(KeyError, match=msg): mi.drop([np.nan], level=0) with pytest.raises(KeyError, match=msg): mi.drop([np.nan, 1, 2, 3], level=0) mi = MultiIndex.from_tuples([(np.nan, 1), (1, 2)]) msg = r"labels \['a'\] not found in level" with pytest.raises(KeyError, match=msg): mi.drop([np.nan, 1, "a"], level=0) def test_droplevel_multiindex_one_level(): # GH#37208 index = MultiIndex.from_tuples([(2,)], names=("b",)) result = index.droplevel([]) expected = Index([2], name="b") tm.assert_index_equal(result, expected)