from contextlib import contextmanager import re import struct import tracemalloc from typing import Generator import numpy as np import pytest from pandas._libs import hashtable as ht import pandas as pd import pandas._testing as tm from pandas.core.algorithms import isin @contextmanager def activated_tracemalloc() -> Generator[None, None, None]: tracemalloc.start() try: yield finally: tracemalloc.stop() def get_allocated_khash_memory(): snapshot = tracemalloc.take_snapshot() snapshot = snapshot.filter_traces( (tracemalloc.DomainFilter(True, ht.get_hashtable_trace_domain()),) ) return sum(map(lambda x: x.size, snapshot.traces)) @pytest.mark.parametrize( "table_type, dtype", [ (ht.PyObjectHashTable, np.object_), (ht.Complex128HashTable, np.complex128), (ht.Int64HashTable, np.int64), (ht.UInt64HashTable, np.uint64), (ht.Float64HashTable, np.float64), (ht.Complex64HashTable, np.complex64), (ht.Int32HashTable, np.int32), (ht.UInt32HashTable, np.uint32), (ht.Float32HashTable, np.float32), (ht.Int16HashTable, np.int16), (ht.UInt16HashTable, np.uint16), (ht.Int8HashTable, np.int8), (ht.UInt8HashTable, np.uint8), (ht.IntpHashTable, np.intp), ], ) class TestHashTable: def test_get_set_contains_len(self, table_type, dtype): index = 5 table = table_type(55) assert len(table) == 0 assert index not in table table.set_item(index, 42) assert len(table) == 1 assert index in table assert table.get_item(index) == 42 table.set_item(index + 1, 41) assert index in table assert index + 1 in table assert len(table) == 2 assert table.get_item(index) == 42 assert table.get_item(index + 1) == 41 table.set_item(index, 21) assert index in table assert index + 1 in table assert len(table) == 2 assert table.get_item(index) == 21 assert table.get_item(index + 1) == 41 assert index + 2 not in table table.set_item(index + 1, 21) assert index in table assert index + 1 in table assert len(table) == 2 assert table.get_item(index) == 21 assert table.get_item(index + 1) == 21 with pytest.raises(KeyError, match=str(index + 2)): table.get_item(index + 2) def test_get_set_contains_len_mask(self, table_type, dtype): if table_type == ht.PyObjectHashTable: pytest.skip("Mask not supported for object") index = 5 table = table_type(55, uses_mask=True) assert len(table) == 0 assert index not in table table.set_item(index, 42) assert len(table) == 1 assert index in table assert table.get_item(index) == 42 with pytest.raises(KeyError, match="NA"): table.get_na() table.set_item(index + 1, 41) table.set_na(41) assert pd.NA in table assert index in table assert index + 1 in table assert len(table) == 3 assert table.get_item(index) == 42 assert table.get_item(index + 1) == 41 assert table.get_na() == 41 table.set_na(21) assert index in table assert index + 1 in table assert len(table) == 3 assert table.get_item(index + 1) == 41 assert table.get_na() == 21 assert index + 2 not in table with pytest.raises(KeyError, match=str(index + 2)): table.get_item(index + 2) def test_map_keys_to_values(self, table_type, dtype, writable): # only Int64HashTable has this method if table_type == ht.Int64HashTable: N = 77 table = table_type() keys = np.arange(N).astype(dtype) vals = np.arange(N).astype(np.int64) + N keys.flags.writeable = writable vals.flags.writeable = writable table.map_keys_to_values(keys, vals) for i in range(N): assert table.get_item(keys[i]) == i + N def test_map_locations(self, table_type, dtype, writable): N = 8 table = table_type() keys = (np.arange(N) + N).astype(dtype) keys.flags.writeable = writable table.map_locations(keys) for i in range(N): assert table.get_item(keys[i]) == i def test_map_locations_mask(self, table_type, dtype, writable): if table_type == ht.PyObjectHashTable: pytest.skip("Mask not supported for object") N = 3 table = table_type(uses_mask=True) keys = (np.arange(N) + N).astype(dtype) keys.flags.writeable = writable table.map_locations(keys, np.array([False, False, True])) for i in range(N - 1): assert table.get_item(keys[i]) == i with pytest.raises(KeyError, match=re.escape(str(keys[N - 1]))): table.get_item(keys[N - 1]) assert table.get_na() == 2 def test_lookup(self, table_type, dtype, writable): N = 3 table = table_type() keys = (np.arange(N) + N).astype(dtype) keys.flags.writeable = writable table.map_locations(keys) result = table.lookup(keys) expected = np.arange(N) tm.assert_numpy_array_equal(result.astype(np.int64), expected.astype(np.int64)) def test_lookup_wrong(self, table_type, dtype): if dtype in (np.int8, np.uint8): N = 100 else: N = 512 table = table_type() keys = (np.arange(N) + N).astype(dtype) table.map_locations(keys) wrong_keys = np.arange(N).astype(dtype) result = table.lookup(wrong_keys) assert np.all(result == -1) def test_lookup_mask(self, table_type, dtype, writable): if table_type == ht.PyObjectHashTable: pytest.skip("Mask not supported for object") N = 3 table = table_type(uses_mask=True) keys = (np.arange(N) + N).astype(dtype) mask = np.array([False, True, False]) keys.flags.writeable = writable table.map_locations(keys, mask) result = table.lookup(keys, mask) expected = np.arange(N) tm.assert_numpy_array_equal(result.astype(np.int64), expected.astype(np.int64)) result = table.lookup(np.array([1 + N]).astype(dtype), np.array([False])) tm.assert_numpy_array_equal( result.astype(np.int64), np.array([-1], dtype=np.int64) ) def test_unique(self, table_type, dtype, writable): if dtype in (np.int8, np.uint8): N = 88 else: N = 1000 table = table_type() expected = (np.arange(N) + N).astype(dtype) keys = np.repeat(expected, 5) keys.flags.writeable = writable unique = table.unique(keys) tm.assert_numpy_array_equal(unique, expected) def test_tracemalloc_works(self, table_type, dtype): if dtype in (np.int8, np.uint8): N = 256 else: N = 30000 keys = np.arange(N).astype(dtype) with activated_tracemalloc(): table = table_type() table.map_locations(keys) used = get_allocated_khash_memory() my_size = table.sizeof() assert used == my_size del table assert get_allocated_khash_memory() == 0 def test_tracemalloc_for_empty(self, table_type, dtype): with activated_tracemalloc(): table = table_type() used = get_allocated_khash_memory() my_size = table.sizeof() assert used == my_size del table assert get_allocated_khash_memory() == 0 def test_get_state(self, table_type, dtype): table = table_type(1000) state = table.get_state() assert state["size"] == 0 assert state["n_occupied"] == 0 assert "n_buckets" in state assert "upper_bound" in state @pytest.mark.parametrize("N", range(1, 110)) def test_no_reallocation(self, table_type, dtype, N): keys = np.arange(N).astype(dtype) preallocated_table = table_type(N) n_buckets_start = preallocated_table.get_state()["n_buckets"] preallocated_table.map_locations(keys) n_buckets_end = preallocated_table.get_state()["n_buckets"] # original number of buckets was enough: assert n_buckets_start == n_buckets_end # check with clean table (not too much preallocated) clean_table = table_type() clean_table.map_locations(keys) assert n_buckets_start == clean_table.get_state()["n_buckets"] class TestHashTableUnsorted: # TODO: moved from test_algos; may be redundancies with other tests def test_string_hashtable_set_item_signature(self): # GH#30419 fix typing in StringHashTable.set_item to prevent segfault tbl = ht.StringHashTable() tbl.set_item("key", 1) assert tbl.get_item("key") == 1 with pytest.raises(TypeError, match="'key' has incorrect type"): # key arg typed as string, not object tbl.set_item(4, 6) with pytest.raises(TypeError, match="'val' has incorrect type"): tbl.get_item(4) def test_lookup_nan(self, writable): # GH#21688 ensure we can deal with readonly memory views xs = np.array([2.718, 3.14, np.nan, -7, 5, 2, 3]) xs.setflags(write=writable) m = ht.Float64HashTable() m.map_locations(xs) tm.assert_numpy_array_equal(m.lookup(xs), np.arange(len(xs), dtype=np.intp)) def test_add_signed_zeros(self): # GH#21866 inconsistent hash-function for float64 # default hash-function would lead to different hash-buckets # for 0.0 and -0.0 if there are more than 2^30 hash-buckets # but this would mean 16GB N = 4 # 12 * 10**8 would trigger the error, if you have enough memory m = ht.Float64HashTable(N) m.set_item(0.0, 0) m.set_item(-0.0, 0) assert len(m) == 1 # 0.0 and -0.0 are equivalent def test_add_different_nans(self): # GH#21866 inconsistent hash-function for float64 # create different nans from bit-patterns: NAN1 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000000))[0] NAN2 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000001))[0] assert NAN1 != NAN1 assert NAN2 != NAN2 # default hash function would lead to different hash-buckets # for NAN1 and NAN2 even if there are only 4 buckets: m = ht.Float64HashTable() m.set_item(NAN1, 0) m.set_item(NAN2, 0) assert len(m) == 1 # NAN1 and NAN2 are equivalent def test_lookup_overflow(self, writable): xs = np.array([1, 2, 2**63], dtype=np.uint64) # GH 21688 ensure we can deal with readonly memory views xs.setflags(write=writable) m = ht.UInt64HashTable() m.map_locations(xs) tm.assert_numpy_array_equal(m.lookup(xs), np.arange(len(xs), dtype=np.intp)) @pytest.mark.parametrize("nvals", [0, 10]) # resizing to 0 is special case @pytest.mark.parametrize( "htable, uniques, dtype, safely_resizes", [ (ht.PyObjectHashTable, ht.ObjectVector, "object", False), (ht.StringHashTable, ht.ObjectVector, "object", True), (ht.Float64HashTable, ht.Float64Vector, "float64", False), (ht.Int64HashTable, ht.Int64Vector, "int64", False), (ht.Int32HashTable, ht.Int32Vector, "int32", False), (ht.UInt64HashTable, ht.UInt64Vector, "uint64", False), ], ) def test_vector_resize( self, writable, htable, uniques, dtype, safely_resizes, nvals ): # Test for memory errors after internal vector # reallocations (GH 7157) # Changed from using np.random.rand to range # which could cause flaky CI failures when safely_resizes=False vals = np.array(range(1000), dtype=dtype) # GH 21688 ensures we can deal with read-only memory views vals.setflags(write=writable) # initialise instances; cannot initialise in parametrization, # as otherwise external views would be held on the array (which is # one of the things this test is checking) htable = htable() uniques = uniques() # get_labels may append to uniques htable.get_labels(vals[:nvals], uniques, 0, -1) # to_array() sets an external_view_exists flag on uniques. tmp = uniques.to_array() oldshape = tmp.shape # subsequent get_labels() calls can no longer append to it # (except for StringHashTables + ObjectVector) if safely_resizes: htable.get_labels(vals, uniques, 0, -1) else: with pytest.raises(ValueError, match="external reference.*"): htable.get_labels(vals, uniques, 0, -1) uniques.to_array() # should not raise here assert tmp.shape == oldshape @pytest.mark.parametrize( "hashtable", [ ht.PyObjectHashTable, ht.StringHashTable, ht.Float64HashTable, ht.Int64HashTable, ht.Int32HashTable, ht.UInt64HashTable, ], ) def test_hashtable_large_sizehint(self, hashtable): # GH#22729 smoketest for not raising when passing a large size_hint size_hint = np.iinfo(np.uint32).max + 1 hashtable(size_hint=size_hint) class TestPyObjectHashTableWithNans: def test_nan_float(self): nan1 = float("nan") nan2 = float("nan") assert nan1 is not nan2 table = ht.PyObjectHashTable() table.set_item(nan1, 42) assert table.get_item(nan2) == 42 def test_nan_complex_both(self): nan1 = complex(float("nan"), float("nan")) nan2 = complex(float("nan"), float("nan")) assert nan1 is not nan2 table = ht.PyObjectHashTable() table.set_item(nan1, 42) assert table.get_item(nan2) == 42 def test_nan_complex_real(self): nan1 = complex(float("nan"), 1) nan2 = complex(float("nan"), 1) other = complex(float("nan"), 2) assert nan1 is not nan2 table = ht.PyObjectHashTable() table.set_item(nan1, 42) assert table.get_item(nan2) == 42 with pytest.raises(KeyError, match=None) as error: table.get_item(other) assert str(error.value) == str(other) def test_nan_complex_imag(self): nan1 = complex(1, float("nan")) nan2 = complex(1, float("nan")) other = complex(2, float("nan")) assert nan1 is not nan2 table = ht.PyObjectHashTable() table.set_item(nan1, 42) assert table.get_item(nan2) == 42 with pytest.raises(KeyError, match=None) as error: table.get_item(other) assert str(error.value) == str(other) def test_nan_in_tuple(self): nan1 = (float("nan"),) nan2 = (float("nan"),) assert nan1[0] is not nan2[0] table = ht.PyObjectHashTable() table.set_item(nan1, 42) assert table.get_item(nan2) == 42 def test_nan_in_nested_tuple(self): nan1 = (1, (2, (float("nan"),))) nan2 = (1, (2, (float("nan"),))) other = (1, 2) table = ht.PyObjectHashTable() table.set_item(nan1, 42) assert table.get_item(nan2) == 42 with pytest.raises(KeyError, match=None) as error: table.get_item(other) assert str(error.value) == str(other) def test_hash_equal_tuple_with_nans(): a = (float("nan"), (float("nan"), float("nan"))) b = (float("nan"), (float("nan"), float("nan"))) assert ht.object_hash(a) == ht.object_hash(b) assert ht.objects_are_equal(a, b) def test_get_labels_groupby_for_Int64(writable): table = ht.Int64HashTable() vals = np.array([1, 2, -1, 2, 1, -1], dtype=np.int64) vals.flags.writeable = writable arr, unique = table.get_labels_groupby(vals) expected_arr = np.array([0, 1, -1, 1, 0, -1], dtype=np.intp) expected_unique = np.array([1, 2], dtype=np.int64) tm.assert_numpy_array_equal(arr, expected_arr) tm.assert_numpy_array_equal(unique, expected_unique) def test_tracemalloc_works_for_StringHashTable(): N = 1000 keys = np.arange(N).astype(np.compat.unicode).astype(np.object_) with activated_tracemalloc(): table = ht.StringHashTable() table.map_locations(keys) used = get_allocated_khash_memory() my_size = table.sizeof() assert used == my_size del table assert get_allocated_khash_memory() == 0 def test_tracemalloc_for_empty_StringHashTable(): with activated_tracemalloc(): table = ht.StringHashTable() used = get_allocated_khash_memory() my_size = table.sizeof() assert used == my_size del table assert get_allocated_khash_memory() == 0 @pytest.mark.parametrize("N", range(1, 110)) def test_no_reallocation_StringHashTable(N): keys = np.arange(N).astype(np.compat.unicode).astype(np.object_) preallocated_table = ht.StringHashTable(N) n_buckets_start = preallocated_table.get_state()["n_buckets"] preallocated_table.map_locations(keys) n_buckets_end = preallocated_table.get_state()["n_buckets"] # original number of buckets was enough: assert n_buckets_start == n_buckets_end # check with clean table (not too much preallocated) clean_table = ht.StringHashTable() clean_table.map_locations(keys) assert n_buckets_start == clean_table.get_state()["n_buckets"] @pytest.mark.parametrize( "table_type, dtype", [ (ht.Float64HashTable, np.float64), (ht.Float32HashTable, np.float32), (ht.Complex128HashTable, np.complex128), (ht.Complex64HashTable, np.complex64), ], ) class TestHashTableWithNans: def test_get_set_contains_len(self, table_type, dtype): index = float("nan") table = table_type() assert index not in table table.set_item(index, 42) assert len(table) == 1 assert index in table assert table.get_item(index) == 42 table.set_item(index, 41) assert len(table) == 1 assert index in table assert table.get_item(index) == 41 def test_map_locations(self, table_type, dtype): N = 10 table = table_type() keys = np.full(N, np.nan, dtype=dtype) table.map_locations(keys) assert len(table) == 1 assert table.get_item(np.nan) == N - 1 def test_unique(self, table_type, dtype): N = 1020 table = table_type() keys = np.full(N, np.nan, dtype=dtype) unique = table.unique(keys) assert np.all(np.isnan(unique)) and len(unique) == 1 def test_unique_for_nan_objects_floats(): table = ht.PyObjectHashTable() keys = np.array([float("nan") for i in range(50)], dtype=np.object_) unique = table.unique(keys) assert len(unique) == 1 def test_unique_for_nan_objects_complex(): table = ht.PyObjectHashTable() keys = np.array([complex(float("nan"), 1.0) for i in range(50)], dtype=np.object_) unique = table.unique(keys) assert len(unique) == 1 def test_unique_for_nan_objects_tuple(): table = ht.PyObjectHashTable() keys = np.array( [1] + [(1.0, (float("nan"), 1.0)) for i in range(50)], dtype=np.object_ ) unique = table.unique(keys) assert len(unique) == 2 @pytest.mark.parametrize( "dtype", [ np.object_, np.complex128, np.int64, np.uint64, np.float64, np.complex64, np.int32, np.uint32, np.float32, np.int16, np.uint16, np.int8, np.uint8, np.intp, ], ) class TestHelpFunctions: def test_value_count(self, dtype, writable): N = 43 expected = (np.arange(N) + N).astype(dtype) values = np.repeat(expected, 5) values.flags.writeable = writable keys, counts = ht.value_count(values, False) tm.assert_numpy_array_equal(np.sort(keys), expected) assert np.all(counts == 5) def test_value_count_stable(self, dtype, writable): # GH12679 values = np.array([2, 1, 5, 22, 3, -1, 8]).astype(dtype) values.flags.writeable = writable keys, counts = ht.value_count(values, False) tm.assert_numpy_array_equal(keys, values) assert np.all(counts == 1) def test_duplicated_first(self, dtype, writable): N = 100 values = np.repeat(np.arange(N).astype(dtype), 5) values.flags.writeable = writable result = ht.duplicated(values) expected = np.ones_like(values, dtype=np.bool_) expected[::5] = False tm.assert_numpy_array_equal(result, expected) def test_ismember_yes(self, dtype, writable): N = 127 arr = np.arange(N).astype(dtype) values = np.arange(N).astype(dtype) arr.flags.writeable = writable values.flags.writeable = writable result = ht.ismember(arr, values) expected = np.ones_like(values, dtype=np.bool_) tm.assert_numpy_array_equal(result, expected) def test_ismember_no(self, dtype): N = 17 arr = np.arange(N).astype(dtype) values = (np.arange(N) + N).astype(dtype) result = ht.ismember(arr, values) expected = np.zeros_like(values, dtype=np.bool_) tm.assert_numpy_array_equal(result, expected) def test_mode(self, dtype, writable): if dtype in (np.int8, np.uint8): N = 53 else: N = 11111 values = np.repeat(np.arange(N).astype(dtype), 5) values[0] = 42 values.flags.writeable = writable result = ht.mode(values, False) assert result == 42 def test_mode_stable(self, dtype, writable): values = np.array([2, 1, 5, 22, 3, -1, 8]).astype(dtype) values.flags.writeable = writable keys = ht.mode(values, False) tm.assert_numpy_array_equal(keys, values) def test_modes_with_nans(): # GH42688, nans aren't mangled nulls = [pd.NA, np.nan, pd.NaT, None] values = np.array([True] + nulls * 2, dtype=np.object_) modes = ht.mode(values, False) assert modes.size == len(nulls) def test_unique_label_indices_intp(writable): keys = np.array([1, 2, 2, 2, 1, 3], dtype=np.intp) keys.flags.writeable = writable result = ht.unique_label_indices(keys) expected = np.array([0, 1, 5], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) def test_unique_label_indices(): a = np.random.randint(1, 1 << 10, 1 << 15).astype(np.intp) left = ht.unique_label_indices(a) right = np.unique(a, return_index=True)[1] tm.assert_numpy_array_equal(left, right, check_dtype=False) a[np.random.choice(len(a), 10)] = -1 left = ht.unique_label_indices(a) right = np.unique(a, return_index=True)[1][1:] tm.assert_numpy_array_equal(left, right, check_dtype=False) @pytest.mark.parametrize( "dtype", [ np.float64, np.float32, np.complex128, np.complex64, ], ) class TestHelpFunctionsWithNans: def test_value_count(self, dtype): values = np.array([np.nan, np.nan, np.nan], dtype=dtype) keys, counts = ht.value_count(values, True) assert len(keys) == 0 keys, counts = ht.value_count(values, False) assert len(keys) == 1 and np.all(np.isnan(keys)) assert counts[0] == 3 def test_duplicated_first(self, dtype): values = np.array([np.nan, np.nan, np.nan], dtype=dtype) result = ht.duplicated(values) expected = np.array([False, True, True]) tm.assert_numpy_array_equal(result, expected) def test_ismember_yes(self, dtype): arr = np.array([np.nan, np.nan, np.nan], dtype=dtype) values = np.array([np.nan, np.nan], dtype=dtype) result = ht.ismember(arr, values) expected = np.array([True, True, True], dtype=np.bool_) tm.assert_numpy_array_equal(result, expected) def test_ismember_no(self, dtype): arr = np.array([np.nan, np.nan, np.nan], dtype=dtype) values = np.array([1], dtype=dtype) result = ht.ismember(arr, values) expected = np.array([False, False, False], dtype=np.bool_) tm.assert_numpy_array_equal(result, expected) def test_mode(self, dtype): values = np.array([42, np.nan, np.nan, np.nan], dtype=dtype) assert ht.mode(values, True) == 42 assert np.isnan(ht.mode(values, False)) def test_ismember_tuple_with_nans(): # GH-41836 values = [("a", float("nan")), ("b", 1)] comps = [("a", float("nan"))] result = isin(values, comps) expected = np.array([True, False], dtype=np.bool_) tm.assert_numpy_array_equal(result, expected) def test_float_complex_int_are_equal_as_objects(): values = ["a", 5, 5.0, 5.0 + 0j] comps = list(range(129)) result = isin(values, comps) expected = np.array([False, True, True, True], dtype=np.bool_) tm.assert_numpy_array_equal(result, expected)