from datetime import ( date, datetime, timedelta, timezone, ) from dateutil.tz.tz import tzoffset import numpy as np import pytest from pandas._libs import ( iNaT, tslib, ) from pandas import Timestamp import pandas._testing as tm @pytest.mark.parametrize( "data,expected", [ ( ["01-01-2013", "01-02-2013"], [ "2013-01-01T00:00:00.000000000", "2013-01-02T00:00:00.000000000", ], ), ( ["Mon Sep 16 2013", "Tue Sep 17 2013"], [ "2013-09-16T00:00:00.000000000", "2013-09-17T00:00:00.000000000", ], ), ], ) def test_parsing_valid_dates(data, expected): arr = np.array(data, dtype=object) result, _ = tslib.array_to_datetime(arr) expected = np.array(expected, dtype="M8[ns]") tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "dt_string, expected_tz", [ ["01-01-2013 08:00:00+08:00", 480], ["2013-01-01T08:00:00.000000000+0800", 480], ["2012-12-31T16:00:00.000000000-0800", -480], ["12-31-2012 23:00:00-01:00", -60], ], ) def test_parsing_timezone_offsets(dt_string, expected_tz): # All of these datetime strings with offsets are equivalent # to the same datetime after the timezone offset is added. arr = np.array(["01-01-2013 00:00:00"], dtype=object) expected, _ = tslib.array_to_datetime(arr) arr = np.array([dt_string], dtype=object) result, result_tz = tslib.array_to_datetime(arr) tm.assert_numpy_array_equal(result, expected) assert result_tz == timezone(timedelta(minutes=expected_tz)) def test_parsing_non_iso_timezone_offset(): dt_string = "01-01-2013T00:00:00.000000000+0000" arr = np.array([dt_string], dtype=object) with tm.assert_produces_warning(None): # GH#50949 should not get tzlocal-deprecation warning here result, result_tz = tslib.array_to_datetime(arr) expected = np.array([np.datetime64("2013-01-01 00:00:00.000000000")]) tm.assert_numpy_array_equal(result, expected) assert result_tz is timezone.utc def test_parsing_different_timezone_offsets(): # see gh-17697 data = ["2015-11-18 15:30:00+05:30", "2015-11-18 15:30:00+06:30"] data = np.array(data, dtype=object) result, result_tz = tslib.array_to_datetime(data) expected = np.array( [ datetime(2015, 11, 18, 15, 30, tzinfo=tzoffset(None, 19800)), datetime(2015, 11, 18, 15, 30, tzinfo=tzoffset(None, 23400)), ], dtype=object, ) tm.assert_numpy_array_equal(result, expected) assert result_tz is None @pytest.mark.parametrize( "data", [["-352.737091", "183.575577"], ["1", "2", "3", "4", "5"]] ) def test_number_looking_strings_not_into_datetime(data): # see gh-4601 # # These strings don't look like datetimes, so # they shouldn't be attempted to be converted. arr = np.array(data, dtype=object) result, _ = tslib.array_to_datetime(arr, errors="ignore") tm.assert_numpy_array_equal(result, arr) @pytest.mark.parametrize( "invalid_date", [ date(1000, 1, 1), datetime(1000, 1, 1), "1000-01-01", "Jan 1, 1000", np.datetime64("1000-01-01"), ], ) @pytest.mark.parametrize("errors", ["coerce", "raise"]) def test_coerce_outside_ns_bounds(invalid_date, errors): arr = np.array([invalid_date], dtype="object") kwargs = {"values": arr, "errors": errors} if errors == "raise": msg = "^Out of bounds nanosecond timestamp: .*, at position 0$" with pytest.raises(ValueError, match=msg): tslib.array_to_datetime(**kwargs) else: # coerce. result, _ = tslib.array_to_datetime(**kwargs) expected = np.array([iNaT], dtype="M8[ns]") tm.assert_numpy_array_equal(result, expected) def test_coerce_outside_ns_bounds_one_valid(): arr = np.array(["1/1/1000", "1/1/2000"], dtype=object) result, _ = tslib.array_to_datetime(arr, errors="coerce") expected = [iNaT, "2000-01-01T00:00:00.000000000"] expected = np.array(expected, dtype="M8[ns]") tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("errors", ["ignore", "coerce"]) def test_coerce_of_invalid_datetimes(errors): arr = np.array(["01-01-2013", "not_a_date", "1"], dtype=object) kwargs = {"values": arr, "errors": errors} if errors == "ignore": # Without coercing, the presence of any invalid # dates prevents any values from being converted. result, _ = tslib.array_to_datetime(**kwargs) tm.assert_numpy_array_equal(result, arr) else: # coerce. # With coercing, the invalid dates becomes iNaT result, _ = tslib.array_to_datetime(arr, errors="coerce") expected = ["2013-01-01T00:00:00.000000000", iNaT, iNaT] tm.assert_numpy_array_equal(result, np.array(expected, dtype="M8[ns]")) def test_to_datetime_barely_out_of_bounds(): # see gh-19382, gh-19529 # # Close enough to bounds that dropping nanos # would result in an in-bounds datetime. arr = np.array(["2262-04-11 23:47:16.854775808"], dtype=object) msg = "^Out of bounds nanosecond timestamp: 2262-04-11 23:47:16, at position 0$" with pytest.raises(tslib.OutOfBoundsDatetime, match=msg): tslib.array_to_datetime(arr) class SubDatetime(datetime): pass @pytest.mark.parametrize( "data,expected", [ ([SubDatetime(2000, 1, 1)], ["2000-01-01T00:00:00.000000000"]), ([datetime(2000, 1, 1)], ["2000-01-01T00:00:00.000000000"]), ([Timestamp(2000, 1, 1)], ["2000-01-01T00:00:00.000000000"]), ], ) def test_datetime_subclass(data, expected): # GH 25851 # ensure that subclassed datetime works with # array_to_datetime arr = np.array(data, dtype=object) result, _ = tslib.array_to_datetime(arr) expected = np.array(expected, dtype="M8[ns]") tm.assert_numpy_array_equal(result, expected)