import pytest import pandas as pd from pandas import DataFrame import pandas._testing as tm @pytest.fixture(params=[True, False]) def by_blocks_fixture(request): return request.param @pytest.fixture(params=["DataFrame", "Series"]) def obj_fixture(request): return request.param def _assert_frame_equal_both(a, b, **kwargs): """ Check that two DataFrame equal. This check is performed commutatively. Parameters ---------- a : DataFrame The first DataFrame to compare. b : DataFrame The second DataFrame to compare. kwargs : dict The arguments passed to `tm.assert_frame_equal`. """ tm.assert_frame_equal(a, b, **kwargs) tm.assert_frame_equal(b, a, **kwargs) @pytest.mark.parametrize("check_like", [True, False]) def test_frame_equal_row_order_mismatch(check_like, obj_fixture): df1 = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=["a", "b", "c"]) df2 = DataFrame({"A": [3, 2, 1], "B": [6, 5, 4]}, index=["c", "b", "a"]) if not check_like: # Do not ignore row-column orderings. msg = f"{obj_fixture}.index are different" with pytest.raises(AssertionError, match=msg): tm.assert_frame_equal(df1, df2, check_like=check_like, obj=obj_fixture) else: _assert_frame_equal_both(df1, df2, check_like=check_like, obj=obj_fixture) @pytest.mark.parametrize( "df1,df2", [ (DataFrame({"A": [1, 2, 3]}), DataFrame({"A": [1, 2, 3, 4]})), (DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}), DataFrame({"A": [1, 2, 3]})), ], ) def test_frame_equal_shape_mismatch(df1, df2, obj_fixture): msg = f"{obj_fixture} are different" with pytest.raises(AssertionError, match=msg): tm.assert_frame_equal(df1, df2, obj=obj_fixture) @pytest.mark.parametrize( "df1,df2,msg", [ # Index ( DataFrame.from_records({"a": [1, 2], "c": ["l1", "l2"]}, index=["a"]), DataFrame.from_records({"a": [1.0, 2.0], "c": ["l1", "l2"]}, index=["a"]), "DataFrame\\.index are different", ), # MultiIndex ( DataFrame.from_records( {"a": [1, 2], "b": [2.1, 1.5], "c": ["l1", "l2"]}, index=["a", "b"] ), DataFrame.from_records( {"a": [1.0, 2.0], "b": [2.1, 1.5], "c": ["l1", "l2"]}, index=["a", "b"] ), "MultiIndex level \\[0\\] are different", ), ], ) def test_frame_equal_index_dtype_mismatch(df1, df2, msg, check_index_type): kwargs = {"check_index_type": check_index_type} if check_index_type: with pytest.raises(AssertionError, match=msg): tm.assert_frame_equal(df1, df2, **kwargs) else: tm.assert_frame_equal(df1, df2, **kwargs) def test_empty_dtypes(check_dtype): columns = ["col1", "col2"] df1 = DataFrame(columns=columns) df2 = DataFrame(columns=columns) kwargs = {"check_dtype": check_dtype} df1["col1"] = df1["col1"].astype("int64") if check_dtype: msg = r"Attributes of DataFrame\..* are different" with pytest.raises(AssertionError, match=msg): tm.assert_frame_equal(df1, df2, **kwargs) else: tm.assert_frame_equal(df1, df2, **kwargs) @pytest.mark.parametrize("check_like", [True, False]) def test_frame_equal_index_mismatch(check_like, obj_fixture): msg = f"""{obj_fixture}\\.index are different {obj_fixture}\\.index values are different \\(33\\.33333 %\\) \\[left\\]: Index\\(\\['a', 'b', 'c'\\], dtype='object'\\) \\[right\\]: Index\\(\\['a', 'b', 'd'\\], dtype='object'\\) At positional index 2, first diff: c != d""" df1 = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=["a", "b", "c"]) df2 = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=["a", "b", "d"]) with pytest.raises(AssertionError, match=msg): tm.assert_frame_equal(df1, df2, check_like=check_like, obj=obj_fixture) @pytest.mark.parametrize("check_like", [True, False]) def test_frame_equal_columns_mismatch(check_like, obj_fixture): msg = f"""{obj_fixture}\\.columns are different {obj_fixture}\\.columns values are different \\(50\\.0 %\\) \\[left\\]: Index\\(\\['A', 'B'\\], dtype='object'\\) \\[right\\]: Index\\(\\['A', 'b'\\], dtype='object'\\)""" df1 = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=["a", "b", "c"]) df2 = DataFrame({"A": [1, 2, 3], "b": [4, 5, 6]}, index=["a", "b", "c"]) with pytest.raises(AssertionError, match=msg): tm.assert_frame_equal(df1, df2, check_like=check_like, obj=obj_fixture) def test_frame_equal_block_mismatch(by_blocks_fixture, obj_fixture): obj = obj_fixture msg = f"""{obj}\\.iloc\\[:, 1\\] \\(column name="B"\\) are different {obj}\\.iloc\\[:, 1\\] \\(column name="B"\\) values are different \\(33\\.33333 %\\) \\[index\\]: \\[0, 1, 2\\] \\[left\\]: \\[4, 5, 6\\] \\[right\\]: \\[4, 5, 7\\]""" df1 = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) df2 = DataFrame({"A": [1, 2, 3], "B": [4, 5, 7]}) with pytest.raises(AssertionError, match=msg): tm.assert_frame_equal(df1, df2, by_blocks=by_blocks_fixture, obj=obj_fixture) @pytest.mark.parametrize( "df1,df2,msg", [ ( DataFrame({"A": ["á", "à", "ä"], "E": ["é", "è", "ë"]}), DataFrame({"A": ["á", "à", "ä"], "E": ["é", "è", "e̊"]}), """{obj}\\.iloc\\[:, 1\\] \\(column name="E"\\) are different {obj}\\.iloc\\[:, 1\\] \\(column name="E"\\) values are different \\(33\\.33333 %\\) \\[index\\]: \\[0, 1, 2\\] \\[left\\]: \\[é, è, ë\\] \\[right\\]: \\[é, è, e̊\\]""", ), ( DataFrame({"A": ["á", "à", "ä"], "E": ["é", "è", "ë"]}), DataFrame({"A": ["a", "a", "a"], "E": ["e", "e", "e"]}), """{obj}\\.iloc\\[:, 0\\] \\(column name="A"\\) are different {obj}\\.iloc\\[:, 0\\] \\(column name="A"\\) values are different \\(100\\.0 %\\) \\[index\\]: \\[0, 1, 2\\] \\[left\\]: \\[á, à, ä\\] \\[right\\]: \\[a, a, a\\]""", ), ], ) def test_frame_equal_unicode(df1, df2, msg, by_blocks_fixture, obj_fixture): # see gh-20503 # # Test ensures that `tm.assert_frame_equals` raises the right exception # when comparing DataFrames containing differing unicode objects. msg = msg.format(obj=obj_fixture) with pytest.raises(AssertionError, match=msg): tm.assert_frame_equal(df1, df2, by_blocks=by_blocks_fixture, obj=obj_fixture) def test_assert_frame_equal_extension_dtype_mismatch(): # https://github.com/pandas-dev/pandas/issues/32747 left = DataFrame({"a": [1, 2, 3]}, dtype="Int64") right = left.astype(int) msg = ( "Attributes of DataFrame\\.iloc\\[:, 0\\] " '\\(column name="a"\\) are different\n\n' 'Attribute "dtype" are different\n' "\\[left\\]: Int64\n" "\\[right\\]: int[32|64]" ) tm.assert_frame_equal(left, right, check_dtype=False) with pytest.raises(AssertionError, match=msg): tm.assert_frame_equal(left, right, check_dtype=True) def test_assert_frame_equal_interval_dtype_mismatch(): # https://github.com/pandas-dev/pandas/issues/32747 left = DataFrame({"a": [pd.Interval(0, 1)]}, dtype="interval") right = left.astype(object) msg = ( "Attributes of DataFrame\\.iloc\\[:, 0\\] " '\\(column name="a"\\) are different\n\n' 'Attribute "dtype" are different\n' "\\[left\\]: interval\\[int64, right\\]\n" "\\[right\\]: object" ) tm.assert_frame_equal(left, right, check_dtype=False) with pytest.raises(AssertionError, match=msg): tm.assert_frame_equal(left, right, check_dtype=True) @pytest.mark.parametrize("right_dtype", ["Int32", "int64"]) def test_assert_frame_equal_ignore_extension_dtype_mismatch(right_dtype): # https://github.com/pandas-dev/pandas/issues/35715 left = DataFrame({"a": [1, 2, 3]}, dtype="Int64") right = DataFrame({"a": [1, 2, 3]}, dtype=right_dtype) tm.assert_frame_equal(left, right, check_dtype=False) @pytest.mark.parametrize( "dtype", [ ("timedelta64[ns]"), ("datetime64[ns, UTC]"), ("Period[D]"), ], ) def test_assert_frame_equal_datetime_like_dtype_mismatch(dtype): df1 = DataFrame({"a": []}, dtype=dtype) df2 = DataFrame({"a": []}) tm.assert_frame_equal(df1, df2, check_dtype=False) def test_allows_duplicate_labels(): left = DataFrame() right = DataFrame().set_flags(allows_duplicate_labels=False) tm.assert_frame_equal(left, left) tm.assert_frame_equal(right, right) tm.assert_frame_equal(left, right, check_flags=False) tm.assert_frame_equal(right, left, check_flags=False) with pytest.raises(AssertionError, match="