import numpy as np import pytest import scipy.sparse as sp from sklearn.utils._testing import assert_array_equal, assert_allclose from sklearn.cluster import BisectingKMeans @pytest.mark.parametrize("bisecting_strategy", ["biggest_inertia", "largest_cluster"]) def test_three_clusters(bisecting_strategy): """Tries to perform bisect k-means for three clusters to check if splitting data is performed correctly. """ # X = np.array([[1, 2], [1, 4], [1, 0], # [10, 2], [10, 4], [10, 0], # [10, 6], [10, 8], [10, 10]]) # X[0][1] swapped with X[1][1] intentionally for checking labeling X = np.array( [[1, 2], [10, 4], [1, 0], [10, 2], [1, 4], [10, 0], [10, 6], [10, 8], [10, 10]] ) bisect_means = BisectingKMeans( n_clusters=3, random_state=0, bisecting_strategy=bisecting_strategy ) bisect_means.fit(X) expected_centers = [[10, 2], [10, 8], [1, 2]] expected_predict = [2, 0] expected_labels = [2, 0, 2, 0, 2, 0, 1, 1, 1] assert_allclose(expected_centers, bisect_means.cluster_centers_) assert_array_equal(expected_predict, bisect_means.predict([[0, 0], [12, 3]])) assert_array_equal(expected_labels, bisect_means.labels_) def test_sparse(): """Test Bisecting K-Means with sparse data. Checks if labels and centers are the same between dense and sparse. """ rng = np.random.RandomState(0) X = rng.rand(20, 2) X[X < 0.8] = 0 X_csr = sp.csr_matrix(X) bisect_means = BisectingKMeans(n_clusters=3, random_state=0) bisect_means.fit(X_csr) sparse_centers = bisect_means.cluster_centers_ bisect_means.fit(X) normal_centers = bisect_means.cluster_centers_ # Check if results is the same for dense and sparse data assert_allclose(normal_centers, sparse_centers, atol=1e-8) @pytest.mark.parametrize("n_clusters", [4, 5]) def test_n_clusters(n_clusters): """Test if resulting labels are in range [0, n_clusters - 1].""" rng = np.random.RandomState(0) X = rng.rand(10, 2) bisect_means = BisectingKMeans(n_clusters=n_clusters, random_state=0) bisect_means.fit(X) assert_array_equal(np.unique(bisect_means.labels_), np.arange(n_clusters)) def test_one_cluster(): """Test single cluster.""" X = np.array([[1, 2], [10, 2], [10, 8]]) bisect_means = BisectingKMeans(n_clusters=1, random_state=0).fit(X) # All labels from fit or predict should be equal 0 assert all(bisect_means.labels_ == 0) assert all(bisect_means.predict(X) == 0) assert_allclose(bisect_means.cluster_centers_, X.mean(axis=0).reshape(1, -1)) @pytest.mark.parametrize("is_sparse", [True, False]) def test_fit_predict(is_sparse): """Check if labels from fit(X) method are same as from fit(X).predict(X).""" rng = np.random.RandomState(0) X = rng.rand(10, 2) if is_sparse: X[X < 0.8] = 0 X = sp.csr_matrix(X) bisect_means = BisectingKMeans(n_clusters=3, random_state=0) bisect_means.fit(X) assert_array_equal(bisect_means.labels_, bisect_means.predict(X)) @pytest.mark.parametrize("is_sparse", [True, False]) def test_dtype_preserved(is_sparse, global_dtype): """Check that centers dtype is the same as input data dtype.""" rng = np.random.RandomState(0) X = rng.rand(10, 2).astype(global_dtype, copy=False) if is_sparse: X[X < 0.8] = 0 X = sp.csr_matrix(X) km = BisectingKMeans(n_clusters=3, random_state=0) km.fit(X) assert km.cluster_centers_.dtype == global_dtype @pytest.mark.parametrize("is_sparse", [True, False]) def test_float32_float64_equivalence(is_sparse): """Check that the results are the same between float32 and float64.""" rng = np.random.RandomState(0) X = rng.rand(10, 2) if is_sparse: X[X < 0.8] = 0 X = sp.csr_matrix(X) km64 = BisectingKMeans(n_clusters=3, random_state=0).fit(X) km32 = BisectingKMeans(n_clusters=3, random_state=0).fit(X.astype(np.float32)) assert_allclose(km32.cluster_centers_, km64.cluster_centers_) assert_array_equal(km32.labels_, km64.labels_)