from itertools import product import numpy as np import math import pytest from sklearn import datasets, clone from sklearn import manifold from sklearn import neighbors from sklearn import pipeline from sklearn import preprocessing from sklearn.datasets import make_blobs from sklearn.metrics.pairwise import pairwise_distances from sklearn.utils._testing import ( assert_allclose, assert_allclose_dense_sparse, assert_array_equal, ) from scipy.sparse import rand as sparse_rand eigen_solvers = ["auto", "dense", "arpack"] path_methods = ["auto", "FW", "D"] def create_sample_data(dtype, n_pts=25, add_noise=False): # grid of equidistant points in 2D, n_components = n_dim n_per_side = int(math.sqrt(n_pts)) X = np.array(list(product(range(n_per_side), repeat=2))).astype(dtype, copy=False) if add_noise: # add noise in a third dimension rng = np.random.RandomState(0) noise = 0.1 * rng.randn(n_pts, 1).astype(dtype, copy=False) X = np.concatenate((X, noise), 1) return X @pytest.mark.parametrize("n_neighbors, radius", [(24, None), (None, np.inf)]) @pytest.mark.parametrize("eigen_solver", eigen_solvers) @pytest.mark.parametrize("path_method", path_methods) def test_isomap_simple_grid( global_dtype, n_neighbors, radius, eigen_solver, path_method ): # Isomap should preserve distances when all neighbors are used n_pts = 25 X = create_sample_data(global_dtype, n_pts=n_pts, add_noise=False) # distances from each point to all others if n_neighbors is not None: G = neighbors.kneighbors_graph(X, n_neighbors, mode="distance") else: G = neighbors.radius_neighbors_graph(X, radius, mode="distance") clf = manifold.Isomap( n_neighbors=n_neighbors, radius=radius, n_components=2, eigen_solver=eigen_solver, path_method=path_method, ) clf.fit(X) if n_neighbors is not None: G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode="distance") else: G_iso = neighbors.radius_neighbors_graph( clf.embedding_, radius, mode="distance" ) atol = 1e-5 if global_dtype == np.float32 else 0 assert_allclose_dense_sparse(G, G_iso, atol=atol) @pytest.mark.parametrize("n_neighbors, radius", [(24, None), (None, np.inf)]) @pytest.mark.parametrize("eigen_solver", eigen_solvers) @pytest.mark.parametrize("path_method", path_methods) def test_isomap_reconstruction_error( global_dtype, n_neighbors, radius, eigen_solver, path_method ): if global_dtype is np.float32: pytest.skip( "Skipping test due to numerical instabilities on float32 data" "from KernelCenterer used in the reconstruction_error method" ) # Same setup as in test_isomap_simple_grid, with an added dimension n_pts = 25 X = create_sample_data(global_dtype, n_pts=n_pts, add_noise=True) # compute input kernel if n_neighbors is not None: G = neighbors.kneighbors_graph(X, n_neighbors, mode="distance").toarray() else: G = neighbors.radius_neighbors_graph(X, radius, mode="distance").toarray() centerer = preprocessing.KernelCenterer() K = centerer.fit_transform(-0.5 * G**2) clf = manifold.Isomap( n_neighbors=n_neighbors, radius=radius, n_components=2, eigen_solver=eigen_solver, path_method=path_method, ) clf.fit(X) # compute output kernel if n_neighbors is not None: G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode="distance") else: G_iso = neighbors.radius_neighbors_graph( clf.embedding_, radius, mode="distance" ) G_iso = G_iso.toarray() K_iso = centerer.fit_transform(-0.5 * G_iso**2) # make sure error agrees reconstruction_error = np.linalg.norm(K - K_iso) / n_pts atol = 1e-5 if global_dtype == np.float32 else 0 assert_allclose(reconstruction_error, clf.reconstruction_error(), atol=atol) @pytest.mark.parametrize("n_neighbors, radius", [(2, None), (None, 0.5)]) def test_transform(global_dtype, n_neighbors, radius): n_samples = 200 n_components = 10 noise_scale = 0.01 # Create S-curve dataset X, y = datasets.make_s_curve(n_samples, random_state=0) X = X.astype(global_dtype, copy=False) # Compute isomap embedding iso = manifold.Isomap( n_components=n_components, n_neighbors=n_neighbors, radius=radius ) X_iso = iso.fit_transform(X) # Re-embed a noisy version of the points rng = np.random.RandomState(0) noise = noise_scale * rng.randn(*X.shape) X_iso2 = iso.transform(X + noise) # Make sure the rms error on re-embedding is comparable to noise_scale assert np.sqrt(np.mean((X_iso - X_iso2) ** 2)) < 2 * noise_scale @pytest.mark.parametrize("n_neighbors, radius", [(2, None), (None, 10.0)]) def test_pipeline(n_neighbors, radius, global_dtype): # check that Isomap works fine as a transformer in a Pipeline # only checks that no error is raised. # TODO check that it actually does something useful X, y = datasets.make_blobs(random_state=0) X = X.astype(global_dtype, copy=False) clf = pipeline.Pipeline( [ ("isomap", manifold.Isomap(n_neighbors=n_neighbors, radius=radius)), ("clf", neighbors.KNeighborsClassifier()), ] ) clf.fit(X, y) assert 0.9 < clf.score(X, y) def test_pipeline_with_nearest_neighbors_transformer(global_dtype): # Test chaining NearestNeighborsTransformer and Isomap with # neighbors_algorithm='precomputed' algorithm = "auto" n_neighbors = 10 X, _ = datasets.make_blobs(random_state=0) X2, _ = datasets.make_blobs(random_state=1) X = X.astype(global_dtype, copy=False) X2 = X2.astype(global_dtype, copy=False) # compare the chained version and the compact version est_chain = pipeline.make_pipeline( neighbors.KNeighborsTransformer( n_neighbors=n_neighbors, algorithm=algorithm, mode="distance" ), manifold.Isomap(n_neighbors=n_neighbors, metric="precomputed"), ) est_compact = manifold.Isomap( n_neighbors=n_neighbors, neighbors_algorithm=algorithm ) Xt_chain = est_chain.fit_transform(X) Xt_compact = est_compact.fit_transform(X) assert_allclose(Xt_chain, Xt_compact) Xt_chain = est_chain.transform(X2) Xt_compact = est_compact.transform(X2) assert_allclose(Xt_chain, Xt_compact) @pytest.mark.parametrize( "metric, p, is_euclidean", [ ("euclidean", 2, True), ("manhattan", 1, False), ("minkowski", 1, False), ("minkowski", 2, True), (lambda x1, x2: np.sqrt(np.sum(x1**2 + x2**2)), 2, False), ], ) def test_different_metric(global_dtype, metric, p, is_euclidean): # Isomap must work on various metric parameters work correctly # and must default to euclidean. X, _ = datasets.make_blobs(random_state=0) X = X.astype(global_dtype, copy=False) reference = manifold.Isomap().fit_transform(X) embedding = manifold.Isomap(metric=metric, p=p).fit_transform(X) if is_euclidean: assert_allclose(embedding, reference) else: with pytest.raises(AssertionError, match="Not equal to tolerance"): assert_allclose(embedding, reference) def test_isomap_clone_bug(): # regression test for bug reported in #6062 model = manifold.Isomap() for n_neighbors in [10, 15, 20]: model.set_params(n_neighbors=n_neighbors) model.fit(np.random.rand(50, 2)) assert model.nbrs_.n_neighbors == n_neighbors @pytest.mark.parametrize("eigen_solver", eigen_solvers) @pytest.mark.parametrize("path_method", path_methods) def test_sparse_input(global_dtype, eigen_solver, path_method, global_random_seed): # TODO: compare results on dense and sparse data as proposed in: # https://github.com/scikit-learn/scikit-learn/pull/23585#discussion_r968388186 X = sparse_rand( 100, 3, density=0.1, format="csr", dtype=global_dtype, random_state=global_random_seed, ) iso_dense = manifold.Isomap( n_components=2, eigen_solver=eigen_solver, path_method=path_method, n_neighbors=8, ) iso_sparse = clone(iso_dense) X_trans_dense = iso_dense.fit_transform(X.toarray()) X_trans_sparse = iso_sparse.fit_transform(X) assert_allclose(X_trans_sparse, X_trans_dense, rtol=1e-4, atol=1e-4) def test_isomap_fit_precomputed_radius_graph(global_dtype): # Isomap.fit_transform must yield similar result when using # a precomputed distance matrix. X, y = datasets.make_s_curve(200, random_state=0) X = X.astype(global_dtype, copy=False) radius = 10 g = neighbors.radius_neighbors_graph(X, radius=radius, mode="distance") isomap = manifold.Isomap(n_neighbors=None, radius=radius, metric="precomputed") isomap.fit(g) precomputed_result = isomap.embedding_ isomap = manifold.Isomap(n_neighbors=None, radius=radius, metric="minkowski") result = isomap.fit_transform(X) atol = 1e-5 if global_dtype == np.float32 else 0 assert_allclose(precomputed_result, result, atol=atol) def test_isomap_fitted_attributes_dtype(global_dtype): """Check that the fitted attributes are stored accordingly to the data type of X.""" iso = manifold.Isomap(n_neighbors=2) X = np.array([[1, 2], [3, 4], [5, 6]], dtype=global_dtype) iso.fit(X) assert iso.dist_matrix_.dtype == global_dtype assert iso.embedding_.dtype == global_dtype def test_isomap_dtype_equivalence(): """Check the equivalence of the results with 32 and 64 bits input.""" iso_32 = manifold.Isomap(n_neighbors=2) X_32 = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.float32) iso_32.fit(X_32) iso_64 = manifold.Isomap(n_neighbors=2) X_64 = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.float64) iso_64.fit(X_64) assert_allclose(iso_32.dist_matrix_, iso_64.dist_matrix_) def test_isomap_raise_error_when_neighbor_and_radius_both_set(): # Isomap.fit_transform must raise a ValueError if # radius and n_neighbors are provided. X, _ = datasets.load_digits(return_X_y=True) isomap = manifold.Isomap(n_neighbors=3, radius=5.5) msg = "Both n_neighbors and radius are provided" with pytest.raises(ValueError, match=msg): isomap.fit_transform(X) def test_multiple_connected_components(): # Test that a warning is raised when the graph has multiple components X = np.array([0, 1, 2, 5, 6, 7])[:, None] with pytest.warns(UserWarning, match="number of connected components"): manifold.Isomap(n_neighbors=2).fit(X) def test_multiple_connected_components_metric_precomputed(global_dtype): # Test that an error is raised when the graph has multiple components # and when X is a precomputed neighbors graph. X = np.array([0, 1, 2, 5, 6, 7])[:, None].astype(global_dtype, copy=False) # works with a precomputed distance matrix (dense) X_distances = pairwise_distances(X) with pytest.warns(UserWarning, match="number of connected components"): manifold.Isomap(n_neighbors=1, metric="precomputed").fit(X_distances) # does not work with a precomputed neighbors graph (sparse) X_graph = neighbors.kneighbors_graph(X, n_neighbors=2, mode="distance") with pytest.raises(RuntimeError, match="number of connected components"): manifold.Isomap(n_neighbors=1, metric="precomputed").fit(X_graph) def test_get_feature_names_out(): """Check get_feature_names_out for Isomap.""" X, y = make_blobs(random_state=0, n_features=4) n_components = 2 iso = manifold.Isomap(n_components=n_components) iso.fit_transform(X) names = iso.get_feature_names_out() assert_array_equal([f"isomap{i}" for i in range(n_components)], names)