from __future__ import annotations from typing import ( TYPE_CHECKING, Any, Iterator, Literal, Sequence, TypeVar, overload, ) import warnings import numpy as np from pandas._libs import ( lib, missing as libmissing, ) from pandas._libs.tslibs import ( get_unit_from_dtype, is_supported_unit, ) from pandas._typing import ( ArrayLike, AstypeArg, AxisInt, DtypeObj, NpDtype, PositionalIndexer, Scalar, ScalarIndexer, SequenceIndexer, Shape, npt, ) from pandas.errors import AbstractMethodError from pandas.util._decorators import doc from pandas.util._validators import validate_fillna_kwargs from pandas.core.dtypes.base import ExtensionDtype from pandas.core.dtypes.common import ( is_bool, is_bool_dtype, is_datetime64_dtype, is_dtype_equal, is_float_dtype, is_integer_dtype, is_list_like, is_object_dtype, is_scalar, is_string_dtype, pandas_dtype, ) from pandas.core.dtypes.dtypes import BaseMaskedDtype from pandas.core.dtypes.inference import is_array_like from pandas.core.dtypes.missing import ( array_equivalent, is_valid_na_for_dtype, isna, notna, ) from pandas.core import ( algorithms as algos, arraylike, missing, nanops, ops, ) from pandas.core.algorithms import ( factorize_array, isin, take, ) from pandas.core.array_algos import ( masked_accumulations, masked_reductions, ) from pandas.core.array_algos.quantile import quantile_with_mask from pandas.core.arraylike import OpsMixin from pandas.core.arrays import ExtensionArray from pandas.core.construction import ensure_wrapped_if_datetimelike from pandas.core.indexers import check_array_indexer from pandas.core.ops import invalid_comparison if TYPE_CHECKING: from pandas import Series from pandas.core.arrays import BooleanArray from pandas._typing import ( NumpySorter, NumpyValueArrayLike, ) from pandas.compat.numpy import function as nv BaseMaskedArrayT = TypeVar("BaseMaskedArrayT", bound="BaseMaskedArray") class BaseMaskedArray(OpsMixin, ExtensionArray): """ Base class for masked arrays (which use _data and _mask to store the data). numpy based """ # The value used to fill '_data' to avoid upcasting _internal_fill_value: Scalar # our underlying data and mask are each ndarrays _data: np.ndarray _mask: npt.NDArray[np.bool_] # Fill values used for any/all _truthy_value = Scalar # bool(_truthy_value) = True _falsey_value = Scalar # bool(_falsey_value) = False def __init__( self, values: np.ndarray, mask: npt.NDArray[np.bool_], copy: bool = False ) -> None: # values is supposed to already be validated in the subclass if not (isinstance(mask, np.ndarray) and mask.dtype == np.bool_): raise TypeError( "mask should be boolean numpy array. Use " "the 'pd.array' function instead" ) if values.shape != mask.shape: raise ValueError("values.shape must match mask.shape") if copy: values = values.copy() mask = mask.copy() self._data = values self._mask = mask @classmethod def _from_sequence( cls: type[BaseMaskedArrayT], scalars, *, dtype=None, copy: bool = False ) -> BaseMaskedArrayT: values, mask = cls._coerce_to_array(scalars, dtype=dtype, copy=copy) return cls(values, mask) @property def dtype(self) -> BaseMaskedDtype: raise AbstractMethodError(self) @overload def __getitem__(self, item: ScalarIndexer) -> Any: ... @overload def __getitem__(self: BaseMaskedArrayT, item: SequenceIndexer) -> BaseMaskedArrayT: ... def __getitem__( self: BaseMaskedArrayT, item: PositionalIndexer ) -> BaseMaskedArrayT | Any: item = check_array_indexer(self, item) newmask = self._mask[item] if is_bool(newmask): # This is a scalar indexing if newmask: return self.dtype.na_value return self._data[item] return type(self)(self._data[item], newmask) @doc(ExtensionArray.fillna) def fillna( self: BaseMaskedArrayT, value=None, method=None, limit=None ) -> BaseMaskedArrayT: value, method = validate_fillna_kwargs(value, method) mask = self._mask if is_array_like(value): if len(value) != len(self): raise ValueError( f"Length of 'value' does not match. Got ({len(value)}) " f" expected {len(self)}" ) value = value[mask] if mask.any(): if method is not None: func = missing.get_fill_func(method, ndim=self.ndim) npvalues = self._data.copy().T new_mask = mask.copy().T func(npvalues, limit=limit, mask=new_mask) return type(self)(npvalues.T, new_mask.T) else: # fill with value new_values = self.copy() new_values[mask] = value else: new_values = self.copy() return new_values @classmethod def _coerce_to_array( cls, values, *, dtype: DtypeObj, copy: bool = False ) -> tuple[np.ndarray, np.ndarray]: raise AbstractMethodError(cls) def _validate_setitem_value(self, value): """ Check if we have a scalar that we can cast losslessly. Raises ------ TypeError """ kind = self.dtype.kind # TODO: get this all from np_can_hold_element? if kind == "b": if lib.is_bool(value): return value elif kind == "f": if lib.is_integer(value) or lib.is_float(value): return value else: if lib.is_integer(value) or (lib.is_float(value) and value.is_integer()): return value # TODO: unsigned checks # Note: without the "str" here, the f-string rendering raises in # py38 builds. raise TypeError(f"Invalid value '{str(value)}' for dtype {self.dtype}") def __setitem__(self, key, value) -> None: key = check_array_indexer(self, key) if is_scalar(value): if is_valid_na_for_dtype(value, self.dtype): self._mask[key] = True else: value = self._validate_setitem_value(value) self._data[key] = value self._mask[key] = False return value, mask = self._coerce_to_array(value, dtype=self.dtype) self._data[key] = value self._mask[key] = mask def __iter__(self) -> Iterator: if self.ndim == 1: if not self._hasna: for val in self._data: yield val else: na_value = self.dtype.na_value for isna_, val in zip(self._mask, self._data): if isna_: yield na_value else: yield val else: for i in range(len(self)): yield self[i] def __len__(self) -> int: return len(self._data) @property def shape(self) -> Shape: return self._data.shape @property def ndim(self) -> int: return self._data.ndim def swapaxes(self: BaseMaskedArrayT, axis1, axis2) -> BaseMaskedArrayT: data = self._data.swapaxes(axis1, axis2) mask = self._mask.swapaxes(axis1, axis2) return type(self)(data, mask) def delete(self: BaseMaskedArrayT, loc, axis: AxisInt = 0) -> BaseMaskedArrayT: data = np.delete(self._data, loc, axis=axis) mask = np.delete(self._mask, loc, axis=axis) return type(self)(data, mask) def reshape(self: BaseMaskedArrayT, *args, **kwargs) -> BaseMaskedArrayT: data = self._data.reshape(*args, **kwargs) mask = self._mask.reshape(*args, **kwargs) return type(self)(data, mask) def ravel(self: BaseMaskedArrayT, *args, **kwargs) -> BaseMaskedArrayT: # TODO: need to make sure we have the same order for data/mask data = self._data.ravel(*args, **kwargs) mask = self._mask.ravel(*args, **kwargs) return type(self)(data, mask) @property def T(self: BaseMaskedArrayT) -> BaseMaskedArrayT: return type(self)(self._data.T, self._mask.T) def round(self, decimals: int = 0, *args, **kwargs): """ Round each value in the array a to the given number of decimals. Parameters ---------- decimals : int, default 0 Number of decimal places to round to. If decimals is negative, it specifies the number of positions to the left of the decimal point. *args, **kwargs Additional arguments and keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- NumericArray Rounded values of the NumericArray. See Also -------- numpy.around : Round values of an np.array. DataFrame.round : Round values of a DataFrame. Series.round : Round values of a Series. """ nv.validate_round(args, kwargs) values = np.round(self._data, decimals=decimals, **kwargs) # Usually we'll get same type as self, but ndarray[bool] casts to float return self._maybe_mask_result(values, self._mask.copy()) # ------------------------------------------------------------------ # Unary Methods def __invert__(self: BaseMaskedArrayT) -> BaseMaskedArrayT: return type(self)(~self._data, self._mask.copy()) def __neg__(self: BaseMaskedArrayT) -> BaseMaskedArrayT: return type(self)(-self._data, self._mask.copy()) def __pos__(self: BaseMaskedArrayT) -> BaseMaskedArrayT: return self.copy() def __abs__(self: BaseMaskedArrayT) -> BaseMaskedArrayT: return type(self)(abs(self._data), self._mask.copy()) # ------------------------------------------------------------------ def to_numpy( self, dtype: npt.DTypeLike | None = None, copy: bool = False, na_value: object = lib.no_default, ) -> np.ndarray: """ Convert to a NumPy Array. By default converts to an object-dtype NumPy array. Specify the `dtype` and `na_value` keywords to customize the conversion. Parameters ---------- dtype : dtype, default object The numpy dtype to convert to. copy : bool, default False Whether to ensure that the returned value is a not a view on the array. Note that ``copy=False`` does not *ensure* that ``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that a copy is made, even if not strictly necessary. This is typically only possible when no missing values are present and `dtype` is the equivalent numpy dtype. na_value : scalar, optional Scalar missing value indicator to use in numpy array. Defaults to the native missing value indicator of this array (pd.NA). Returns ------- numpy.ndarray Examples -------- An object-dtype is the default result >>> a = pd.array([True, False, pd.NA], dtype="boolean") >>> a.to_numpy() array([True, False, ], dtype=object) When no missing values are present, an equivalent dtype can be used. >>> pd.array([True, False], dtype="boolean").to_numpy(dtype="bool") array([ True, False]) >>> pd.array([1, 2], dtype="Int64").to_numpy("int64") array([1, 2]) However, requesting such dtype will raise a ValueError if missing values are present and the default missing value :attr:`NA` is used. >>> a = pd.array([True, False, pd.NA], dtype="boolean") >>> a [True, False, ] Length: 3, dtype: boolean >>> a.to_numpy(dtype="bool") Traceback (most recent call last): ... ValueError: cannot convert to bool numpy array in presence of missing values Specify a valid `na_value` instead >>> a.to_numpy(dtype="bool", na_value=False) array([ True, False, False]) """ if na_value is lib.no_default: na_value = libmissing.NA if dtype is None: dtype = object if self._hasna: if ( not is_object_dtype(dtype) and not is_string_dtype(dtype) and na_value is libmissing.NA ): raise ValueError( f"cannot convert to '{dtype}'-dtype NumPy array " "with missing values. Specify an appropriate 'na_value' " "for this dtype." ) # don't pass copy to astype -> always need a copy since we are mutating with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=RuntimeWarning) data = self._data.astype(dtype) data[self._mask] = na_value else: with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=RuntimeWarning) data = self._data.astype(dtype, copy=copy) return data @doc(ExtensionArray.tolist) def tolist(self): if self.ndim > 1: return [x.tolist() for x in self] dtype = None if self._hasna else self._data.dtype return self.to_numpy(dtype=dtype).tolist() @overload def astype(self, dtype: npt.DTypeLike, copy: bool = ...) -> np.ndarray: ... @overload def astype(self, dtype: ExtensionDtype, copy: bool = ...) -> ExtensionArray: ... @overload def astype(self, dtype: AstypeArg, copy: bool = ...) -> ArrayLike: ... def astype(self, dtype: AstypeArg, copy: bool = True) -> ArrayLike: dtype = pandas_dtype(dtype) if is_dtype_equal(dtype, self.dtype): if copy: return self.copy() return self # if we are astyping to another nullable masked dtype, we can fastpath if isinstance(dtype, BaseMaskedDtype): # TODO deal with NaNs for FloatingArray case with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=RuntimeWarning) # TODO: Is rounding what we want long term? data = self._data.astype(dtype.numpy_dtype, copy=copy) # mask is copied depending on whether the data was copied, and # not directly depending on the `copy` keyword mask = self._mask if data is self._data else self._mask.copy() cls = dtype.construct_array_type() return cls(data, mask, copy=False) if isinstance(dtype, ExtensionDtype): eacls = dtype.construct_array_type() return eacls._from_sequence(self, dtype=dtype, copy=copy) na_value: float | np.datetime64 | lib.NoDefault # coerce if is_float_dtype(dtype): # In astype, we consider dtype=float to also mean na_value=np.nan na_value = np.nan elif is_datetime64_dtype(dtype): na_value = np.datetime64("NaT") else: na_value = lib.no_default # to_numpy will also raise, but we get somewhat nicer exception messages here if is_integer_dtype(dtype) and self._hasna: raise ValueError("cannot convert NA to integer") if is_bool_dtype(dtype) and self._hasna: # careful: astype_nansafe converts np.nan to True raise ValueError("cannot convert float NaN to bool") data = self.to_numpy(dtype=dtype, na_value=na_value, copy=copy) return data __array_priority__ = 1000 # higher than ndarray so ops dispatch to us def __array__(self, dtype: NpDtype | None = None) -> np.ndarray: """ the array interface, return my values We return an object array here to preserve our scalar values """ return self.to_numpy(dtype=dtype) _HANDLED_TYPES: tuple[type, ...] def __array_ufunc__(self, ufunc: np.ufunc, method: str, *inputs, **kwargs): # For MaskedArray inputs, we apply the ufunc to ._data # and mask the result. out = kwargs.get("out", ()) for x in inputs + out: if not isinstance(x, self._HANDLED_TYPES + (BaseMaskedArray,)): return NotImplemented # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result if "out" in kwargs: # e.g. test_ufunc_with_out return arraylike.dispatch_ufunc_with_out( self, ufunc, method, *inputs, **kwargs ) if method == "reduce": result = arraylike.dispatch_reduction_ufunc( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result mask = np.zeros(len(self), dtype=bool) inputs2 = [] for x in inputs: if isinstance(x, BaseMaskedArray): mask |= x._mask inputs2.append(x._data) else: inputs2.append(x) def reconstruct(x): # we don't worry about scalar `x` here, since we # raise for reduce up above. from pandas.core.arrays import ( BooleanArray, FloatingArray, IntegerArray, ) if is_bool_dtype(x.dtype): m = mask.copy() return BooleanArray(x, m) elif is_integer_dtype(x.dtype): m = mask.copy() return IntegerArray(x, m) elif is_float_dtype(x.dtype): m = mask.copy() if x.dtype == np.float16: # reached in e.g. np.sqrt on BooleanArray # we don't support float16 x = x.astype(np.float32) return FloatingArray(x, m) else: x[mask] = np.nan return x result = getattr(ufunc, method)(*inputs2, **kwargs) if ufunc.nout > 1: # e.g. np.divmod return tuple(reconstruct(x) for x in result) elif method == "reduce": # e.g. np.add.reduce; test_ufunc_reduce_raises if self._mask.any(): return self._na_value return result else: return reconstruct(result) def __arrow_array__(self, type=None): """ Convert myself into a pyarrow Array. """ import pyarrow as pa return pa.array(self._data, mask=self._mask, type=type) @property def _hasna(self) -> bool: # Note: this is expensive right now! The hope is that we can # make this faster by having an optional mask, but not have to change # source code using it.. # error: Incompatible return value type (got "bool_", expected "bool") return self._mask.any() # type: ignore[return-value] def _propagate_mask( self, mask: npt.NDArray[np.bool_] | None, other ) -> npt.NDArray[np.bool_]: if mask is None: mask = self._mask.copy() # TODO: need test for BooleanArray needing a copy if other is libmissing.NA: # GH#45421 don't alter inplace mask = mask | True elif is_list_like(other) and len(other) == len(mask): mask = mask | isna(other) else: mask = self._mask | mask # Incompatible return value type (got "Optional[ndarray[Any, dtype[bool_]]]", # expected "ndarray[Any, dtype[bool_]]") return mask # type: ignore[return-value] def _arith_method(self, other, op): op_name = op.__name__ omask = None if ( not hasattr(other, "dtype") and is_list_like(other) and len(other) == len(self) ): # Try inferring masked dtype instead of casting to object inferred_dtype = lib.infer_dtype(other, skipna=True) if inferred_dtype == "integer": from pandas.core.arrays import IntegerArray other = IntegerArray._from_sequence(other) elif inferred_dtype in ["floating", "mixed-integer-float"]: from pandas.core.arrays import FloatingArray other = FloatingArray._from_sequence(other) elif inferred_dtype in ["boolean"]: from pandas.core.arrays import BooleanArray other = BooleanArray._from_sequence(other) if isinstance(other, BaseMaskedArray): other, omask = other._data, other._mask elif is_list_like(other): if not isinstance(other, ExtensionArray): other = np.asarray(other) if other.ndim > 1: raise NotImplementedError("can only perform ops with 1-d structures") # We wrap the non-masked arithmetic logic used for numpy dtypes # in Series/Index arithmetic ops. other = ops.maybe_prepare_scalar_for_op(other, (len(self),)) pd_op = ops.get_array_op(op) other = ensure_wrapped_if_datetimelike(other) if op_name in {"pow", "rpow"} and isinstance(other, np.bool_): # Avoid DeprecationWarning: In future, it will be an error # for 'np.bool_' scalars to be interpreted as an index # e.g. test_array_scalar_like_equivalence other = bool(other) mask = self._propagate_mask(omask, other) if other is libmissing.NA: result = np.ones_like(self._data) if self.dtype.kind == "b": if op_name in { "floordiv", "rfloordiv", "pow", "rpow", "truediv", "rtruediv", }: # GH#41165 Try to match non-masked Series behavior # This is still imperfect GH#46043 raise NotImplementedError( f"operator '{op_name}' not implemented for bool dtypes" ) if op_name in {"mod", "rmod"}: dtype = "int8" else: dtype = "bool" result = result.astype(dtype) elif "truediv" in op_name and self.dtype.kind != "f": # The actual data here doesn't matter since the mask # will be all-True, but since this is division, we want # to end up with floating dtype. result = result.astype(np.float64) else: # Make sure we do this before the "pow" mask checks # to get an expected exception message on shape mismatch. if self.dtype.kind in ["i", "u"] and op_name in ["floordiv", "mod"]: # TODO(GH#30188) ATM we don't match the behavior of non-masked # types with respect to floordiv-by-zero pd_op = op with np.errstate(all="ignore"): result = pd_op(self._data, other) if op_name == "pow": # 1 ** x is 1. mask = np.where((self._data == 1) & ~self._mask, False, mask) # x ** 0 is 1. if omask is not None: mask = np.where((other == 0) & ~omask, False, mask) elif other is not libmissing.NA: mask = np.where(other == 0, False, mask) elif op_name == "rpow": # 1 ** x is 1. if omask is not None: mask = np.where((other == 1) & ~omask, False, mask) elif other is not libmissing.NA: mask = np.where(other == 1, False, mask) # x ** 0 is 1. mask = np.where((self._data == 0) & ~self._mask, False, mask) return self._maybe_mask_result(result, mask) _logical_method = _arith_method def _cmp_method(self, other, op) -> BooleanArray: from pandas.core.arrays import BooleanArray mask = None if isinstance(other, BaseMaskedArray): other, mask = other._data, other._mask elif is_list_like(other): other = np.asarray(other) if other.ndim > 1: raise NotImplementedError("can only perform ops with 1-d structures") if len(self) != len(other): raise ValueError("Lengths must match to compare") if other is libmissing.NA: # numpy does not handle pd.NA well as "other" scalar (it returns # a scalar False instead of an array) # This may be fixed by NA.__array_ufunc__. Revisit this check # once that's implemented. result = np.zeros(self._data.shape, dtype="bool") mask = np.ones(self._data.shape, dtype="bool") else: with warnings.catch_warnings(): # numpy may show a FutureWarning or DeprecationWarning: # elementwise comparison failed; returning scalar instead, # but in the future will perform elementwise comparison # before returning NotImplemented. We fall back to the correct # behavior today, so that should be fine to ignore. warnings.filterwarnings("ignore", "elementwise", FutureWarning) warnings.filterwarnings("ignore", "elementwise", DeprecationWarning) with np.errstate(all="ignore"): method = getattr(self._data, f"__{op.__name__}__") result = method(other) if result is NotImplemented: result = invalid_comparison(self._data, other, op) mask = self._propagate_mask(mask, other) return BooleanArray(result, mask, copy=False) def _maybe_mask_result(self, result, mask): """ Parameters ---------- result : array-like or tuple[array-like] mask : array-like bool """ if isinstance(result, tuple): # i.e. divmod div, mod = result return ( self._maybe_mask_result(div, mask), self._maybe_mask_result(mod, mask), ) if is_float_dtype(result.dtype): from pandas.core.arrays import FloatingArray return FloatingArray(result, mask, copy=False) elif is_bool_dtype(result.dtype): from pandas.core.arrays import BooleanArray return BooleanArray(result, mask, copy=False) elif ( isinstance(result.dtype, np.dtype) and result.dtype.kind == "m" and is_supported_unit(get_unit_from_dtype(result.dtype)) ): # e.g. test_numeric_arr_mul_tdscalar_numexpr_path from pandas.core.arrays import TimedeltaArray if not isinstance(result, TimedeltaArray): result = TimedeltaArray._simple_new(result, dtype=result.dtype) result[mask] = result.dtype.type("NaT") return result elif is_integer_dtype(result.dtype): from pandas.core.arrays import IntegerArray return IntegerArray(result, mask, copy=False) else: result[mask] = np.nan return result def isna(self) -> np.ndarray: return self._mask.copy() @property def _na_value(self): return self.dtype.na_value @property def nbytes(self) -> int: return self._data.nbytes + self._mask.nbytes @classmethod def _concat_same_type( cls: type[BaseMaskedArrayT], to_concat: Sequence[BaseMaskedArrayT], axis: AxisInt = 0, ) -> BaseMaskedArrayT: data = np.concatenate([x._data for x in to_concat], axis=axis) mask = np.concatenate([x._mask for x in to_concat], axis=axis) return cls(data, mask) def take( self: BaseMaskedArrayT, indexer, *, allow_fill: bool = False, fill_value: Scalar | None = None, axis: AxisInt = 0, ) -> BaseMaskedArrayT: # we always fill with 1 internally # to avoid upcasting data_fill_value = self._internal_fill_value if isna(fill_value) else fill_value result = take( self._data, indexer, fill_value=data_fill_value, allow_fill=allow_fill, axis=axis, ) mask = take( self._mask, indexer, fill_value=True, allow_fill=allow_fill, axis=axis ) # if we are filling # we only fill where the indexer is null # not existing missing values # TODO(jreback) what if we have a non-na float as a fill value? if allow_fill and notna(fill_value): fill_mask = np.asarray(indexer) == -1 result[fill_mask] = fill_value mask = mask ^ fill_mask return type(self)(result, mask, copy=False) # error: Return type "BooleanArray" of "isin" incompatible with return type # "ndarray" in supertype "ExtensionArray" def isin(self, values) -> BooleanArray: # type: ignore[override] from pandas.core.arrays import BooleanArray # algorithms.isin will eventually convert values to an ndarray, so no extra # cost to doing it here first values_arr = np.asarray(values) result = isin(self._data, values_arr) if self._hasna: values_have_NA = is_object_dtype(values_arr.dtype) and any( val is self.dtype.na_value for val in values_arr ) # For now, NA does not propagate so set result according to presence of NA, # see https://github.com/pandas-dev/pandas/pull/38379 for some discussion result[self._mask] = values_have_NA mask = np.zeros(self._data.shape, dtype=bool) return BooleanArray(result, mask, copy=False) def copy(self: BaseMaskedArrayT) -> BaseMaskedArrayT: data, mask = self._data, self._mask data = data.copy() mask = mask.copy() return type(self)(data, mask, copy=False) def unique(self: BaseMaskedArrayT) -> BaseMaskedArrayT: """ Compute the BaseMaskedArray of unique values. Returns ------- uniques : BaseMaskedArray """ uniques, mask = algos.unique_with_mask(self._data, self._mask) return type(self)(uniques, mask, copy=False) @doc(ExtensionArray.searchsorted) def searchsorted( self, value: NumpyValueArrayLike | ExtensionArray, side: Literal["left", "right"] = "left", sorter: NumpySorter = None, ) -> npt.NDArray[np.intp] | np.intp: if self._hasna: raise ValueError( "searchsorted requires array to be sorted, which is impossible " "with NAs present." ) if isinstance(value, ExtensionArray): value = value.astype(object) # Base class searchsorted would cast to object, which is *much* slower. return self._data.searchsorted(value, side=side, sorter=sorter) @doc(ExtensionArray.factorize) def factorize( self, use_na_sentinel: bool = True, ) -> tuple[np.ndarray, ExtensionArray]: arr = self._data mask = self._mask # Use a sentinel for na; recode and add NA to uniques if necessary below codes, uniques = factorize_array(arr, use_na_sentinel=True, mask=mask) # check that factorize_array correctly preserves dtype. assert uniques.dtype == self.dtype.numpy_dtype, (uniques.dtype, self.dtype) has_na = mask.any() if use_na_sentinel or not has_na: size = len(uniques) else: # Make room for an NA value size = len(uniques) + 1 uniques_mask = np.zeros(size, dtype=bool) if not use_na_sentinel and has_na: na_index = mask.argmax() # Insert na with the proper code if na_index == 0: na_code = np.intp(0) else: # mypy error: Slice index must be an integer or None # https://github.com/python/mypy/issues/2410 na_code = codes[:na_index].max() + 1 # type: ignore[misc] codes[codes >= na_code] += 1 codes[codes == -1] = na_code # dummy value for uniques; not used since uniques_mask will be True uniques = np.insert(uniques, na_code, 0) uniques_mask[na_code] = True uniques_ea = type(self)(uniques, uniques_mask) return codes, uniques_ea @doc(ExtensionArray._values_for_argsort) def _values_for_argsort(self) -> np.ndarray: return self._data def value_counts(self, dropna: bool = True) -> Series: """ Returns a Series containing counts of each unique value. Parameters ---------- dropna : bool, default True Don't include counts of missing values. Returns ------- counts : Series See Also -------- Series.value_counts """ from pandas import ( Index, Series, ) from pandas.arrays import IntegerArray keys, value_counts = algos.value_counts_arraylike( self._data, dropna=True, mask=self._mask ) if dropna: res = Series(value_counts, index=keys, name="count", copy=False) res.index = res.index.astype(self.dtype) res = res.astype("Int64") return res # if we want nans, count the mask counts = np.empty(len(value_counts) + 1, dtype="int64") counts[:-1] = value_counts counts[-1] = self._mask.sum() index = Index(keys, dtype=self.dtype).insert(len(keys), self.dtype.na_value) index = index.astype(self.dtype) mask = np.zeros(len(counts), dtype="bool") counts_array = IntegerArray(counts, mask) return Series(counts_array, index=index, name="count", copy=False) @doc(ExtensionArray.equals) def equals(self, other) -> bool: if type(self) != type(other): return False if other.dtype != self.dtype: return False # GH#44382 if e.g. self[1] is np.nan and other[1] is pd.NA, we are NOT # equal. if not np.array_equal(self._mask, other._mask): return False left = self._data[~self._mask] right = other._data[~other._mask] return array_equivalent(left, right, dtype_equal=True) def _quantile( self, qs: npt.NDArray[np.float64], interpolation: str ) -> BaseMaskedArray: """ Dispatch to quantile_with_mask, needed because we do not have _from_factorized. Notes ----- We assume that all impacted cases are 1D-only. """ res = quantile_with_mask( self._data, mask=self._mask, # TODO(GH#40932): na_value_for_dtype(self.dtype.numpy_dtype) # instead of np.nan fill_value=np.nan, qs=qs, interpolation=interpolation, ) if self._hasna: # Our result mask is all-False unless we are all-NA, in which # case it is all-True. if self.ndim == 2: # I think this should be out_mask=self.isna().all(axis=1) # but am holding off until we have tests raise NotImplementedError if self.isna().all(): out_mask = np.ones(res.shape, dtype=bool) if is_integer_dtype(self.dtype): # We try to maintain int dtype if possible for not all-na case # as well res = np.zeros(res.shape, dtype=self.dtype.numpy_dtype) else: out_mask = np.zeros(res.shape, dtype=bool) else: out_mask = np.zeros(res.shape, dtype=bool) return self._maybe_mask_result(res, mask=out_mask) # ------------------------------------------------------------------ # Reductions def _reduce(self, name: str, *, skipna: bool = True, **kwargs): if name in {"any", "all", "min", "max", "sum", "prod", "mean", "var", "std"}: return getattr(self, name)(skipna=skipna, **kwargs) data = self._data mask = self._mask # median, skew, kurt, sem op = getattr(nanops, f"nan{name}") result = op(data, axis=0, skipna=skipna, mask=mask, **kwargs) if np.isnan(result): return libmissing.NA return result def _wrap_reduction_result(self, name: str, result, skipna, **kwargs): if isinstance(result, np.ndarray): axis = kwargs["axis"] if skipna: # we only retain mask for all-NA rows/columns mask = self._mask.all(axis=axis) else: mask = self._mask.any(axis=axis) return self._maybe_mask_result(result, mask) return result def sum( self, *, skipna: bool = True, min_count: int = 0, axis: AxisInt | None = 0, **kwargs, ): nv.validate_sum((), kwargs) # TODO: do this in validate_sum? if "out" in kwargs: # np.sum; test_floating_array_numpy_sum if kwargs["out"] is not None: raise NotImplementedError kwargs.pop("out") result = masked_reductions.sum( self._data, self._mask, skipna=skipna, min_count=min_count, axis=axis, ) return self._wrap_reduction_result( "sum", result, skipna=skipna, axis=axis, **kwargs ) def prod( self, *, skipna: bool = True, min_count: int = 0, axis: AxisInt | None = 0, **kwargs, ): nv.validate_prod((), kwargs) result = masked_reductions.prod( self._data, self._mask, skipna=skipna, min_count=min_count, axis=axis, ) return self._wrap_reduction_result( "prod", result, skipna=skipna, axis=axis, **kwargs ) def mean(self, *, skipna: bool = True, axis: AxisInt | None = 0, **kwargs): nv.validate_mean((), kwargs) result = masked_reductions.mean( self._data, self._mask, skipna=skipna, axis=axis, ) return self._wrap_reduction_result( "mean", result, skipna=skipna, axis=axis, **kwargs ) def var( self, *, skipna: bool = True, axis: AxisInt | None = 0, ddof: int = 1, **kwargs ): nv.validate_stat_ddof_func((), kwargs, fname="var") result = masked_reductions.var( self._data, self._mask, skipna=skipna, axis=axis, ddof=ddof, ) return self._wrap_reduction_result( "var", result, skipna=skipna, axis=axis, **kwargs ) def std( self, *, skipna: bool = True, axis: AxisInt | None = 0, ddof: int = 1, **kwargs ): nv.validate_stat_ddof_func((), kwargs, fname="std") result = masked_reductions.std( self._data, self._mask, skipna=skipna, axis=axis, ddof=ddof, ) return self._wrap_reduction_result( "std", result, skipna=skipna, axis=axis, **kwargs ) def min(self, *, skipna: bool = True, axis: AxisInt | None = 0, **kwargs): nv.validate_min((), kwargs) return masked_reductions.min( self._data, self._mask, skipna=skipna, axis=axis, ) def max(self, *, skipna: bool = True, axis: AxisInt | None = 0, **kwargs): nv.validate_max((), kwargs) return masked_reductions.max( self._data, self._mask, skipna=skipna, axis=axis, ) def any(self, *, skipna: bool = True, **kwargs): """ Return whether any element is truthy. Returns False unless there is at least one element that is truthy. By default, NAs are skipped. If ``skipna=False`` is specified and missing values are present, similar :ref:`Kleene logic ` is used as for logical operations. .. versionchanged:: 1.4.0 Parameters ---------- skipna : bool, default True Exclude NA values. If the entire array is NA and `skipna` is True, then the result will be False, as for an empty array. If `skipna` is False, the result will still be True if there is at least one element that is truthy, otherwise NA will be returned if there are NA's present. **kwargs : any, default None Additional keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- bool or :attr:`pandas.NA` See Also -------- numpy.any : Numpy version of this method. BaseMaskedArray.all : Return whether all elements are truthy. Examples -------- The result indicates whether any element is truthy (and by default skips NAs): >>> pd.array([True, False, True]).any() True >>> pd.array([True, False, pd.NA]).any() True >>> pd.array([False, False, pd.NA]).any() False >>> pd.array([], dtype="boolean").any() False >>> pd.array([pd.NA], dtype="boolean").any() False >>> pd.array([pd.NA], dtype="Float64").any() False With ``skipna=False``, the result can be NA if this is logically required (whether ``pd.NA`` is True or False influences the result): >>> pd.array([True, False, pd.NA]).any(skipna=False) True >>> pd.array([1, 0, pd.NA]).any(skipna=False) True >>> pd.array([False, False, pd.NA]).any(skipna=False) >>> pd.array([0, 0, pd.NA]).any(skipna=False) """ kwargs.pop("axis", None) nv.validate_any((), kwargs) values = self._data.copy() # error: Argument 3 to "putmask" has incompatible type "object"; # expected "Union[_SupportsArray[dtype[Any]], # _NestedSequence[_SupportsArray[dtype[Any]]], # bool, int, float, complex, str, bytes, # _NestedSequence[Union[bool, int, float, complex, str, bytes]]]" np.putmask(values, self._mask, self._falsey_value) # type: ignore[arg-type] result = values.any() if skipna: return result else: if result or len(self) == 0 or not self._mask.any(): return result else: return self.dtype.na_value def all(self, *, skipna: bool = True, **kwargs): """ Return whether all elements are truthy. Returns True unless there is at least one element that is falsey. By default, NAs are skipped. If ``skipna=False`` is specified and missing values are present, similar :ref:`Kleene logic ` is used as for logical operations. .. versionchanged:: 1.4.0 Parameters ---------- skipna : bool, default True Exclude NA values. If the entire array is NA and `skipna` is True, then the result will be True, as for an empty array. If `skipna` is False, the result will still be False if there is at least one element that is falsey, otherwise NA will be returned if there are NA's present. **kwargs : any, default None Additional keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- bool or :attr:`pandas.NA` See Also -------- numpy.all : Numpy version of this method. BooleanArray.any : Return whether any element is truthy. Examples -------- The result indicates whether all elements are truthy (and by default skips NAs): >>> pd.array([True, True, pd.NA]).all() True >>> pd.array([1, 1, pd.NA]).all() True >>> pd.array([True, False, pd.NA]).all() False >>> pd.array([], dtype="boolean").all() True >>> pd.array([pd.NA], dtype="boolean").all() True >>> pd.array([pd.NA], dtype="Float64").all() True With ``skipna=False``, the result can be NA if this is logically required (whether ``pd.NA`` is True or False influences the result): >>> pd.array([True, True, pd.NA]).all(skipna=False) >>> pd.array([1, 1, pd.NA]).all(skipna=False) >>> pd.array([True, False, pd.NA]).all(skipna=False) False >>> pd.array([1, 0, pd.NA]).all(skipna=False) False """ kwargs.pop("axis", None) nv.validate_all((), kwargs) values = self._data.copy() # error: Argument 3 to "putmask" has incompatible type "object"; # expected "Union[_SupportsArray[dtype[Any]], # _NestedSequence[_SupportsArray[dtype[Any]]], # bool, int, float, complex, str, bytes, # _NestedSequence[Union[bool, int, float, complex, str, bytes]]]" np.putmask(values, self._mask, self._truthy_value) # type: ignore[arg-type] result = values.all() if skipna: return result else: if not result or len(self) == 0 or not self._mask.any(): return result else: return self.dtype.na_value def _accumulate( self, name: str, *, skipna: bool = True, **kwargs ) -> BaseMaskedArray: data = self._data mask = self._mask op = getattr(masked_accumulations, name) data, mask = op(data, mask, skipna=skipna, **kwargs) return type(self)(data, mask, copy=False)