# --------------------------------------------------------------------- # JSON normalization routines from __future__ import annotations from collections import ( abc, defaultdict, ) import copy import sys from typing import ( Any, DefaultDict, Iterable, ) import numpy as np from pandas._libs.writers import convert_json_to_lines from pandas._typing import ( IgnoreRaise, Scalar, ) import pandas as pd from pandas import DataFrame def convert_to_line_delimits(s: str) -> str: """ Helper function that converts JSON lists to line delimited JSON. """ # Determine we have a JSON list to turn to lines otherwise just return the # json object, only lists can if not s[0] == "[" and s[-1] == "]": return s s = s[1:-1] return convert_json_to_lines(s) def nested_to_record( ds, prefix: str = "", sep: str = ".", level: int = 0, max_level: int | None = None, ): """ A simplified json_normalize Converts a nested dict into a flat dict ("record"), unlike json_normalize, it does not attempt to extract a subset of the data. Parameters ---------- ds : dict or list of dicts prefix: the prefix, optional, default: "" sep : str, default '.' Nested records will generate names separated by sep, e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar level: int, optional, default: 0 The number of levels in the json string. max_level: int, optional, default: None The max depth to normalize. Returns ------- d - dict or list of dicts, matching `ds` Examples -------- >>> nested_to_record( ... dict(flat1=1, dict1=dict(c=1, d=2), nested=dict(e=dict(c=1, d=2), d=2)) ... ) {\ 'flat1': 1, \ 'dict1.c': 1, \ 'dict1.d': 2, \ 'nested.e.c': 1, \ 'nested.e.d': 2, \ 'nested.d': 2\ } """ singleton = False if isinstance(ds, dict): ds = [ds] singleton = True new_ds = [] for d in ds: new_d = copy.deepcopy(d) for k, v in d.items(): # each key gets renamed with prefix if not isinstance(k, str): k = str(k) if level == 0: newkey = k else: newkey = prefix + sep + k # flatten if type is dict and # current dict level < maximum level provided and # only dicts gets recurse-flattened # only at level>1 do we rename the rest of the keys if not isinstance(v, dict) or ( max_level is not None and level >= max_level ): if level != 0: # so we skip copying for top level, common case v = new_d.pop(k) new_d[newkey] = v continue v = new_d.pop(k) new_d.update(nested_to_record(v, newkey, sep, level + 1, max_level)) new_ds.append(new_d) if singleton: return new_ds[0] return new_ds def _normalise_json( data: Any, key_string: str, normalized_dict: dict[str, Any], separator: str, ) -> dict[str, Any]: """ Main recursive function Designed for the most basic use case of pd.json_normalize(data) intended as a performance improvement, see #15621 Parameters ---------- data : Any Type dependent on types contained within nested Json key_string : str New key (with separator(s) in) for data normalized_dict : dict The new normalized/flattened Json dict separator : str, default '.' Nested records will generate names separated by sep, e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar """ if isinstance(data, dict): for key, value in data.items(): new_key = f"{key_string}{separator}{key}" if not key_string: if sys.version_info < (3, 9): from pandas.util._str_methods import removeprefix new_key = removeprefix(new_key, separator) else: new_key = new_key.removeprefix(separator) _normalise_json( data=value, key_string=new_key, normalized_dict=normalized_dict, separator=separator, ) else: normalized_dict[key_string] = data return normalized_dict def _normalise_json_ordered(data: dict[str, Any], separator: str) -> dict[str, Any]: """ Order the top level keys and then recursively go to depth Parameters ---------- data : dict or list of dicts separator : str, default '.' Nested records will generate names separated by sep, e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar Returns ------- dict or list of dicts, matching `normalised_json_object` """ top_dict_ = {k: v for k, v in data.items() if not isinstance(v, dict)} nested_dict_ = _normalise_json( data={k: v for k, v in data.items() if isinstance(v, dict)}, key_string="", normalized_dict={}, separator=separator, ) return {**top_dict_, **nested_dict_} def _simple_json_normalize( ds: dict | list[dict], sep: str = ".", ) -> dict | list[dict] | Any: """ A optimized basic json_normalize Converts a nested dict into a flat dict ("record"), unlike json_normalize and nested_to_record it doesn't do anything clever. But for the most basic use cases it enhances performance. E.g. pd.json_normalize(data) Parameters ---------- ds : dict or list of dicts sep : str, default '.' Nested records will generate names separated by sep, e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar Returns ------- frame : DataFrame d - dict or list of dicts, matching `normalised_json_object` Examples -------- >>> _simple_json_normalize( ... { ... "flat1": 1, ... "dict1": {"c": 1, "d": 2}, ... "nested": {"e": {"c": 1, "d": 2}, "d": 2}, ... } ... ) {\ 'flat1': 1, \ 'dict1.c': 1, \ 'dict1.d': 2, \ 'nested.e.c': 1, \ 'nested.e.d': 2, \ 'nested.d': 2\ } """ normalised_json_object = {} # expect a dictionary, as most jsons are. However, lists are perfectly valid if isinstance(ds, dict): normalised_json_object = _normalise_json_ordered(data=ds, separator=sep) elif isinstance(ds, list): normalised_json_list = [_simple_json_normalize(row, sep=sep) for row in ds] return normalised_json_list return normalised_json_object def json_normalize( data: dict | list[dict], record_path: str | list | None = None, meta: str | list[str | list[str]] | None = None, meta_prefix: str | None = None, record_prefix: str | None = None, errors: IgnoreRaise = "raise", sep: str = ".", max_level: int | None = None, ) -> DataFrame: """ Normalize semi-structured JSON data into a flat table. Parameters ---------- data : dict or list of dicts Unserialized JSON objects. record_path : str or list of str, default None Path in each object to list of records. If not passed, data will be assumed to be an array of records. meta : list of paths (str or list of str), default None Fields to use as metadata for each record in resulting table. meta_prefix : str, default None If True, prefix records with dotted (?) path, e.g. foo.bar.field if meta is ['foo', 'bar']. record_prefix : str, default None If True, prefix records with dotted (?) path, e.g. foo.bar.field if path to records is ['foo', 'bar']. errors : {'raise', 'ignore'}, default 'raise' Configures error handling. * 'ignore' : will ignore KeyError if keys listed in meta are not always present. * 'raise' : will raise KeyError if keys listed in meta are not always present. sep : str, default '.' Nested records will generate names separated by sep. e.g., for sep='.', {'foo': {'bar': 0}} -> foo.bar. max_level : int, default None Max number of levels(depth of dict) to normalize. if None, normalizes all levels. Returns ------- frame : DataFrame Normalize semi-structured JSON data into a flat table. Examples -------- >>> data = [ ... {"id": 1, "name": {"first": "Coleen", "last": "Volk"}}, ... {"name": {"given": "Mark", "family": "Regner"}}, ... {"id": 2, "name": "Faye Raker"}, ... ] >>> pd.json_normalize(data) id name.first name.last name.given name.family name 0 1.0 Coleen Volk NaN NaN NaN 1 NaN NaN NaN Mark Regner NaN 2 2.0 NaN NaN NaN NaN Faye Raker >>> data = [ ... { ... "id": 1, ... "name": "Cole Volk", ... "fitness": {"height": 130, "weight": 60}, ... }, ... {"name": "Mark Reg", "fitness": {"height": 130, "weight": 60}}, ... { ... "id": 2, ... "name": "Faye Raker", ... "fitness": {"height": 130, "weight": 60}, ... }, ... ] >>> pd.json_normalize(data, max_level=0) id name fitness 0 1.0 Cole Volk {'height': 130, 'weight': 60} 1 NaN Mark Reg {'height': 130, 'weight': 60} 2 2.0 Faye Raker {'height': 130, 'weight': 60} Normalizes nested data up to level 1. >>> data = [ ... { ... "id": 1, ... "name": "Cole Volk", ... "fitness": {"height": 130, "weight": 60}, ... }, ... {"name": "Mark Reg", "fitness": {"height": 130, "weight": 60}}, ... { ... "id": 2, ... "name": "Faye Raker", ... "fitness": {"height": 130, "weight": 60}, ... }, ... ] >>> pd.json_normalize(data, max_level=1) id name fitness.height fitness.weight 0 1.0 Cole Volk 130 60 1 NaN Mark Reg 130 60 2 2.0 Faye Raker 130 60 >>> data = [ ... { ... "state": "Florida", ... "shortname": "FL", ... "info": {"governor": "Rick Scott"}, ... "counties": [ ... {"name": "Dade", "population": 12345}, ... {"name": "Broward", "population": 40000}, ... {"name": "Palm Beach", "population": 60000}, ... ], ... }, ... { ... "state": "Ohio", ... "shortname": "OH", ... "info": {"governor": "John Kasich"}, ... "counties": [ ... {"name": "Summit", "population": 1234}, ... {"name": "Cuyahoga", "population": 1337}, ... ], ... }, ... ] >>> result = pd.json_normalize( ... data, "counties", ["state", "shortname", ["info", "governor"]] ... ) >>> result name population state shortname info.governor 0 Dade 12345 Florida FL Rick Scott 1 Broward 40000 Florida FL Rick Scott 2 Palm Beach 60000 Florida FL Rick Scott 3 Summit 1234 Ohio OH John Kasich 4 Cuyahoga 1337 Ohio OH John Kasich >>> data = {"A": [1, 2]} >>> pd.json_normalize(data, "A", record_prefix="Prefix.") Prefix.0 0 1 1 2 Returns normalized data with columns prefixed with the given string. """ def _pull_field( js: dict[str, Any], spec: list | str, extract_record: bool = False ) -> Scalar | Iterable: """Internal function to pull field""" result = js try: if isinstance(spec, list): for field in spec: if result is None: raise KeyError(field) result = result[field] else: result = result[spec] except KeyError as e: if extract_record: raise KeyError( f"Key {e} not found. If specifying a record_path, all elements of " f"data should have the path." ) from e if errors == "ignore": return np.nan else: raise KeyError( f"Key {e} not found. To replace missing values of {e} with " f"np.nan, pass in errors='ignore'" ) from e return result def _pull_records(js: dict[str, Any], spec: list | str) -> list: """ Internal function to pull field for records, and similar to _pull_field, but require to return list. And will raise error if has non iterable value. """ result = _pull_field(js, spec, extract_record=True) # GH 31507 GH 30145, GH 26284 if result is not list, raise TypeError if not # null, otherwise return an empty list if not isinstance(result, list): if pd.isnull(result): result = [] else: raise TypeError( f"{js} has non list value {result} for path {spec}. " "Must be list or null." ) return result if isinstance(data, list) and not data: return DataFrame() elif isinstance(data, dict): # A bit of a hackjob data = [data] elif isinstance(data, abc.Iterable) and not isinstance(data, str): # GH35923 Fix pd.json_normalize to not skip the first element of a # generator input data = list(data) else: raise NotImplementedError # check to see if a simple recursive function is possible to # improve performance (see #15621) but only for cases such # as pd.Dataframe(data) or pd.Dataframe(data, sep) if ( record_path is None and meta is None and meta_prefix is None and record_prefix is None and max_level is None ): return DataFrame(_simple_json_normalize(data, sep=sep)) if record_path is None: if any([isinstance(x, dict) for x in y.values()] for y in data): # naive normalization, this is idempotent for flat records # and potentially will inflate the data considerably for # deeply nested structures: # {VeryLong: { b: 1,c:2}} -> {VeryLong.b:1 ,VeryLong.c:@} # # TODO: handle record value which are lists, at least error # reasonably data = nested_to_record(data, sep=sep, max_level=max_level) return DataFrame(data) elif not isinstance(record_path, list): record_path = [record_path] if meta is None: meta = [] elif not isinstance(meta, list): meta = [meta] _meta = [m if isinstance(m, list) else [m] for m in meta] # Disastrously inefficient for now records: list = [] lengths = [] meta_vals: DefaultDict = defaultdict(list) meta_keys = [sep.join(val) for val in _meta] def _recursive_extract(data, path, seen_meta, level: int = 0) -> None: if isinstance(data, dict): data = [data] if len(path) > 1: for obj in data: for val, key in zip(_meta, meta_keys): if level + 1 == len(val): seen_meta[key] = _pull_field(obj, val[-1]) _recursive_extract(obj[path[0]], path[1:], seen_meta, level=level + 1) else: for obj in data: recs = _pull_records(obj, path[0]) recs = [ nested_to_record(r, sep=sep, max_level=max_level) if isinstance(r, dict) else r for r in recs ] # For repeating the metadata later lengths.append(len(recs)) for val, key in zip(_meta, meta_keys): if level + 1 > len(val): meta_val = seen_meta[key] else: meta_val = _pull_field(obj, val[level:]) meta_vals[key].append(meta_val) records.extend(recs) _recursive_extract(data, record_path, {}, level=0) result = DataFrame(records) if record_prefix is not None: result = result.rename(columns=lambda x: f"{record_prefix}{x}") # Data types, a problem for k, v in meta_vals.items(): if meta_prefix is not None: k = meta_prefix + k if k in result: raise ValueError( f"Conflicting metadata name {k}, need distinguishing prefix " ) result[k] = np.array(v, dtype=object).repeat(lengths) return result