""" Read a SAS XPort format file into a Pandas DataFrame. Based on code from Jack Cushman (github.com/jcushman/xport). The file format is defined here: https://support.sas.com/content/dam/SAS/support/en/technical-papers/record-layout-of-a-sas-version-5-or-6-data-set-in-sas-transport-xport-format.pdf """ from __future__ import annotations from collections import abc from datetime import datetime import struct import warnings import numpy as np from pandas._typing import ( CompressionOptions, DatetimeNaTType, FilePath, ReadBuffer, ) from pandas.util._decorators import Appender from pandas.util._exceptions import find_stack_level import pandas as pd from pandas.io.common import get_handle from pandas.io.sas.sasreader import ReaderBase _correct_line1 = ( "HEADER RECORD*******LIBRARY HEADER RECORD!!!!!!!" "000000000000000000000000000000 " ) _correct_header1 = ( "HEADER RECORD*******MEMBER HEADER RECORD!!!!!!!000000000000000001600000000" ) _correct_header2 = ( "HEADER RECORD*******DSCRPTR HEADER RECORD!!!!!!!" "000000000000000000000000000000 " ) _correct_obs_header = ( "HEADER RECORD*******OBS HEADER RECORD!!!!!!!" "000000000000000000000000000000 " ) _fieldkeys = [ "ntype", "nhfun", "field_length", "nvar0", "name", "label", "nform", "nfl", "num_decimals", "nfj", "nfill", "niform", "nifl", "nifd", "npos", "_", ] _base_params_doc = """\ Parameters ---------- filepath_or_buffer : str or file-like object Path to SAS file or object implementing binary read method.""" _params2_doc = """\ index : identifier of index column Identifier of column that should be used as index of the DataFrame. encoding : str Encoding for text data. chunksize : int Read file `chunksize` lines at a time, returns iterator.""" _format_params_doc = """\ format : str File format, only `xport` is currently supported.""" _iterator_doc = """\ iterator : bool, default False Return XportReader object for reading file incrementally.""" _read_sas_doc = f"""Read a SAS file into a DataFrame. {_base_params_doc} {_format_params_doc} {_params2_doc} {_iterator_doc} Returns ------- DataFrame or XportReader Examples -------- Read a SAS Xport file: >>> df = pd.read_sas('filename.XPT') Read a Xport file in 10,000 line chunks: >>> itr = pd.read_sas('filename.XPT', chunksize=10000) >>> for chunk in itr: >>> do_something(chunk) """ _xport_reader_doc = f"""\ Class for reading SAS Xport files. {_base_params_doc} {_params2_doc} Attributes ---------- member_info : list Contains information about the file fields : list Contains information about the variables in the file """ _read_method_doc = """\ Read observations from SAS Xport file, returning as data frame. Parameters ---------- nrows : int Number of rows to read from data file; if None, read whole file. Returns ------- A DataFrame. """ def _parse_date(datestr: str) -> DatetimeNaTType: """Given a date in xport format, return Python date.""" try: # e.g. "16FEB11:10:07:55" return datetime.strptime(datestr, "%d%b%y:%H:%M:%S") except ValueError: return pd.NaT def _split_line(s: str, parts): """ Parameters ---------- s: str Fixed-length string to split parts: list of (name, length) pairs Used to break up string, name '_' will be filtered from output. Returns ------- Dict of name:contents of string at given location. """ out = {} start = 0 for name, length in parts: out[name] = s[start : start + length].strip() start += length del out["_"] return out def _handle_truncated_float_vec(vec, nbytes): # This feature is not well documented, but some SAS XPORT files # have 2-7 byte "truncated" floats. To read these truncated # floats, pad them with zeros on the right to make 8 byte floats. # # References: # https://github.com/jcushman/xport/pull/3 # The R "foreign" library if nbytes != 8: vec1 = np.zeros(len(vec), np.dtype("S8")) dtype = np.dtype(f"S{nbytes},S{8 - nbytes}") vec2 = vec1.view(dtype=dtype) vec2["f0"] = vec return vec2 return vec def _parse_float_vec(vec): """ Parse a vector of float values representing IBM 8 byte floats into native 8 byte floats. """ dtype = np.dtype(">u4,>u4") vec1 = vec.view(dtype=dtype) xport1 = vec1["f0"] xport2 = vec1["f1"] # Start by setting first half of ieee number to first half of IBM # number sans exponent ieee1 = xport1 & 0x00FFFFFF # The fraction bit to the left of the binary point in the ieee # format was set and the number was shifted 0, 1, 2, or 3 # places. This will tell us how to adjust the ibm exponent to be a # power of 2 ieee exponent and how to shift the fraction bits to # restore the correct magnitude. shift = np.zeros(len(vec), dtype=np.uint8) shift[np.where(xport1 & 0x00200000)] = 1 shift[np.where(xport1 & 0x00400000)] = 2 shift[np.where(xport1 & 0x00800000)] = 3 # shift the ieee number down the correct number of places then # set the second half of the ieee number to be the second half # of the ibm number shifted appropriately, ored with the bits # from the first half that would have been shifted in if we # could shift a double. All we are worried about are the low # order 3 bits of the first half since we're only shifting by # 1, 2, or 3. ieee1 >>= shift ieee2 = (xport2 >> shift) | ((xport1 & 0x00000007) << (29 + (3 - shift))) # clear the 1 bit to the left of the binary point ieee1 &= 0xFFEFFFFF # set the exponent of the ieee number to be the actual exponent # plus the shift count + 1023. Or this into the first half of the # ieee number. The ibm exponent is excess 64 but is adjusted by 65 # since during conversion to ibm format the exponent is # incremented by 1 and the fraction bits left 4 positions to the # right of the radix point. (had to add >> 24 because C treats & # 0x7f as 0x7f000000 and Python doesn't) ieee1 |= ((((((xport1 >> 24) & 0x7F) - 65) << 2) + shift + 1023) << 20) | ( xport1 & 0x80000000 ) ieee = np.empty((len(ieee1),), dtype=">u4,>u4") ieee["f0"] = ieee1 ieee["f1"] = ieee2 ieee = ieee.view(dtype=">f8") ieee = ieee.astype("f8") return ieee class XportReader(ReaderBase, abc.Iterator): __doc__ = _xport_reader_doc def __init__( self, filepath_or_buffer: FilePath | ReadBuffer[bytes], index=None, encoding: str | None = "ISO-8859-1", chunksize=None, compression: CompressionOptions = "infer", ) -> None: self._encoding = encoding self._lines_read = 0 self._index = index self._chunksize = chunksize self.handles = get_handle( filepath_or_buffer, "rb", encoding=encoding, is_text=False, compression=compression, ) self.filepath_or_buffer = self.handles.handle try: self._read_header() except Exception: self.close() raise def close(self) -> None: self.handles.close() def _get_row(self): return self.filepath_or_buffer.read(80).decode() def _read_header(self): self.filepath_or_buffer.seek(0) # read file header line1 = self._get_row() if line1 != _correct_line1: if "**COMPRESSED**" in line1: # this was created with the PROC CPORT method and can't be read # https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/movefile/p1bm6aqp3fw4uin1hucwh718f6kp.htm raise ValueError( "Header record indicates a CPORT file, which is not readable." ) raise ValueError("Header record is not an XPORT file.") line2 = self._get_row() fif = [["prefix", 24], ["version", 8], ["OS", 8], ["_", 24], ["created", 16]] file_info = _split_line(line2, fif) if file_info["prefix"] != "SAS SAS SASLIB": raise ValueError("Header record has invalid prefix.") file_info["created"] = _parse_date(file_info["created"]) self.file_info = file_info line3 = self._get_row() file_info["modified"] = _parse_date(line3[:16]) # read member header header1 = self._get_row() header2 = self._get_row() headflag1 = header1.startswith(_correct_header1) headflag2 = header2 == _correct_header2 if not (headflag1 and headflag2): raise ValueError("Member header not found") # usually 140, could be 135 fieldnamelength = int(header1[-5:-2]) # member info mem = [ ["prefix", 8], ["set_name", 8], ["sasdata", 8], ["version", 8], ["OS", 8], ["_", 24], ["created", 16], ] member_info = _split_line(self._get_row(), mem) mem = [["modified", 16], ["_", 16], ["label", 40], ["type", 8]] member_info.update(_split_line(self._get_row(), mem)) member_info["modified"] = _parse_date(member_info["modified"]) member_info["created"] = _parse_date(member_info["created"]) self.member_info = member_info # read field names types = {1: "numeric", 2: "char"} fieldcount = int(self._get_row()[54:58]) datalength = fieldnamelength * fieldcount # round up to nearest 80 if datalength % 80: datalength += 80 - datalength % 80 fielddata = self.filepath_or_buffer.read(datalength) fields = [] obs_length = 0 while len(fielddata) >= fieldnamelength: # pull data for one field fieldbytes, fielddata = ( fielddata[:fieldnamelength], fielddata[fieldnamelength:], ) # rest at end gets ignored, so if field is short, pad out # to match struct pattern below fieldbytes = fieldbytes.ljust(140) fieldstruct = struct.unpack(">hhhh8s40s8shhh2s8shhl52s", fieldbytes) field = dict(zip(_fieldkeys, fieldstruct)) del field["_"] field["ntype"] = types[field["ntype"]] fl = field["field_length"] if field["ntype"] == "numeric" and ((fl < 2) or (fl > 8)): msg = f"Floating field width {fl} is not between 2 and 8." raise TypeError(msg) for k, v in field.items(): try: field[k] = v.strip() except AttributeError: pass obs_length += field["field_length"] fields += [field] header = self._get_row() if not header == _correct_obs_header: raise ValueError("Observation header not found.") self.fields = fields self.record_length = obs_length self.record_start = self.filepath_or_buffer.tell() self.nobs = self._record_count() self.columns = [x["name"].decode() for x in self.fields] # Setup the dtype. dtypel = [ ("s" + str(i), "S" + str(field["field_length"])) for i, field in enumerate(self.fields) ] dtype = np.dtype(dtypel) self._dtype = dtype def __next__(self) -> pd.DataFrame: return self.read(nrows=self._chunksize or 1) def _record_count(self) -> int: """ Get number of records in file. This is maybe suboptimal because we have to seek to the end of the file. Side effect: returns file position to record_start. """ self.filepath_or_buffer.seek(0, 2) total_records_length = self.filepath_or_buffer.tell() - self.record_start if total_records_length % 80 != 0: warnings.warn( "xport file may be corrupted.", stacklevel=find_stack_level(), ) if self.record_length > 80: self.filepath_or_buffer.seek(self.record_start) return total_records_length // self.record_length self.filepath_or_buffer.seek(-80, 2) last_card_bytes = self.filepath_or_buffer.read(80) last_card = np.frombuffer(last_card_bytes, dtype=np.uint64) # 8 byte blank ix = np.flatnonzero(last_card == 2314885530818453536) if len(ix) == 0: tail_pad = 0 else: tail_pad = 8 * len(ix) self.filepath_or_buffer.seek(self.record_start) return (total_records_length - tail_pad) // self.record_length def get_chunk(self, size=None) -> pd.DataFrame: """ Reads lines from Xport file and returns as dataframe Parameters ---------- size : int, defaults to None Number of lines to read. If None, reads whole file. Returns ------- DataFrame """ if size is None: size = self._chunksize return self.read(nrows=size) def _missing_double(self, vec): v = vec.view(dtype="u1,u1,u2,u4") miss = (v["f1"] == 0) & (v["f2"] == 0) & (v["f3"] == 0) miss1 = ( ((v["f0"] >= 0x41) & (v["f0"] <= 0x5A)) | (v["f0"] == 0x5F) | (v["f0"] == 0x2E) ) miss &= miss1 return miss @Appender(_read_method_doc) def read(self, nrows: int | None = None) -> pd.DataFrame: if nrows is None: nrows = self.nobs read_lines = min(nrows, self.nobs - self._lines_read) read_len = read_lines * self.record_length if read_len <= 0: self.close() raise StopIteration raw = self.filepath_or_buffer.read(read_len) data = np.frombuffer(raw, dtype=self._dtype, count=read_lines) df_data = {} for j, x in enumerate(self.columns): vec = data["s" + str(j)] ntype = self.fields[j]["ntype"] if ntype == "numeric": vec = _handle_truncated_float_vec(vec, self.fields[j]["field_length"]) miss = self._missing_double(vec) v = _parse_float_vec(vec) v[miss] = np.nan elif self.fields[j]["ntype"] == "char": v = [y.rstrip() for y in vec] if self._encoding is not None: v = [y.decode(self._encoding) for y in v] df_data.update({x: v}) df = pd.DataFrame(df_data) if self._index is None: df.index = pd.Index(range(self._lines_read, self._lines_read + read_lines)) else: df = df.set_index(self._index) self._lines_read += read_lines return df