import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Index, Period, PeriodIndex, Series, Timedelta, TimedeltaIndex, Timestamp, ) import pandas._testing as tm from pandas.tests.copy_view.util import get_array # ----------------------------------------------------------------------------- # Copy/view behaviour for Series / DataFrame constructors @pytest.mark.parametrize("dtype", [None, "int64"]) def test_series_from_series(dtype, using_copy_on_write): # Case: constructing a Series from another Series object follows CoW rules: # a new object is returned and thus mutations are not propagated ser = Series([1, 2, 3], name="name") # default is copy=False -> new Series is a shallow copy / view of original result = Series(ser, dtype=dtype) # the shallow copy still shares memory assert np.shares_memory(get_array(ser), get_array(result)) if using_copy_on_write: assert result._mgr.blocks[0].refs.has_reference() if using_copy_on_write: # mutating new series copy doesn't mutate original result.iloc[0] = 0 assert ser.iloc[0] == 1 # mutating triggered a copy-on-write -> no longer shares memory assert not np.shares_memory(get_array(ser), get_array(result)) else: # mutating shallow copy does mutate original result.iloc[0] = 0 assert ser.iloc[0] == 0 # and still shares memory assert np.shares_memory(get_array(ser), get_array(result)) # the same when modifying the parent result = Series(ser, dtype=dtype) if using_copy_on_write: # mutating original doesn't mutate new series ser.iloc[0] = 0 assert result.iloc[0] == 1 else: # mutating original does mutate shallow copy ser.iloc[0] = 0 assert result.iloc[0] == 0 def test_series_from_series_with_reindex(using_copy_on_write): # Case: constructing a Series from another Series with specifying an index # that potentially requires a reindex of the values ser = Series([1, 2, 3], name="name") # passing an index that doesn't actually require a reindex of the values # -> without CoW we get an actual mutating view for index in [ ser.index, ser.index.copy(), list(ser.index), ser.index.rename("idx"), ]: result = Series(ser, index=index) assert np.shares_memory(ser.values, result.values) result.iloc[0] = 0 if using_copy_on_write: assert ser.iloc[0] == 1 else: assert ser.iloc[0] == 0 # ensure that if an actual reindex is needed, we don't have any refs # (mutating the result wouldn't trigger CoW) result = Series(ser, index=[0, 1, 2, 3]) assert not np.shares_memory(ser.values, result.values) if using_copy_on_write: assert not result._mgr.blocks[0].refs.has_reference() @pytest.mark.parametrize("fastpath", [False, True]) @pytest.mark.parametrize("dtype", [None, "int64"]) @pytest.mark.parametrize("idx", [None, pd.RangeIndex(start=0, stop=3, step=1)]) @pytest.mark.parametrize( "arr", [np.array([1, 2, 3], dtype="int64"), pd.array([1, 2, 3], dtype="Int64")] ) def test_series_from_array(using_copy_on_write, idx, dtype, fastpath, arr): if idx is None or dtype is not None: fastpath = False ser = Series(arr, dtype=dtype, index=idx, fastpath=fastpath) ser_orig = ser.copy() data = getattr(arr, "_data", arr) if using_copy_on_write: assert not np.shares_memory(get_array(ser), data) else: assert np.shares_memory(get_array(ser), data) arr[0] = 100 if using_copy_on_write: tm.assert_series_equal(ser, ser_orig) else: expected = Series([100, 2, 3], dtype=dtype if dtype is not None else arr.dtype) tm.assert_series_equal(ser, expected) @pytest.mark.parametrize("copy", [True, False, None]) def test_series_from_array_different_dtype(using_copy_on_write, copy): arr = np.array([1, 2, 3], dtype="int64") ser = Series(arr, dtype="int32", copy=copy) assert not np.shares_memory(get_array(ser), arr) @pytest.mark.parametrize( "idx", [ Index([1, 2]), DatetimeIndex([Timestamp("2019-12-31"), Timestamp("2020-12-31")]), PeriodIndex([Period("2019-12-31"), Period("2020-12-31")]), TimedeltaIndex([Timedelta("1 days"), Timedelta("2 days")]), ], ) def test_series_from_index(using_copy_on_write, idx): ser = Series(idx) expected = idx.copy(deep=True) if using_copy_on_write: assert np.shares_memory(get_array(ser), get_array(idx)) assert not ser._mgr._has_no_reference(0) else: assert not np.shares_memory(get_array(ser), get_array(idx)) ser.iloc[0] = ser.iloc[1] tm.assert_index_equal(idx, expected) def test_series_from_index_different_dtypes(using_copy_on_write): idx = Index([1, 2, 3], dtype="int64") ser = Series(idx, dtype="int32") assert not np.shares_memory(get_array(ser), get_array(idx)) if using_copy_on_write: assert ser._mgr._has_no_reference(0) @pytest.mark.parametrize("fastpath", [False, True]) @pytest.mark.parametrize("dtype", [None, "int64"]) @pytest.mark.parametrize("idx", [None, pd.RangeIndex(start=0, stop=3, step=1)]) def test_series_from_block_manager(using_copy_on_write, idx, dtype, fastpath): ser = Series([1, 2, 3], dtype="int64") ser_orig = ser.copy() ser2 = Series(ser._mgr, dtype=dtype, fastpath=fastpath, index=idx) assert np.shares_memory(get_array(ser), get_array(ser2)) if using_copy_on_write: assert not ser2._mgr._has_no_reference(0) ser2.iloc[0] = 100 if using_copy_on_write: tm.assert_series_equal(ser, ser_orig) else: expected = Series([100, 2, 3]) tm.assert_series_equal(ser, expected) def test_series_from_block_manager_different_dtype(using_copy_on_write): ser = Series([1, 2, 3], dtype="int64") ser2 = Series(ser._mgr, dtype="int32") assert not np.shares_memory(get_array(ser), get_array(ser2)) if using_copy_on_write: assert ser2._mgr._has_no_reference(0) @pytest.mark.parametrize("func", [lambda x: x, lambda x: x._mgr]) @pytest.mark.parametrize("columns", [None, ["a"]]) def test_dataframe_constructor_mgr_or_df(using_copy_on_write, columns, func): df = DataFrame({"a": [1, 2, 3]}) df_orig = df.copy() new_df = DataFrame(func(df)) assert np.shares_memory(get_array(df, "a"), get_array(new_df, "a")) new_df.iloc[0] = 100 if using_copy_on_write: assert not np.shares_memory(get_array(df, "a"), get_array(new_df, "a")) tm.assert_frame_equal(df, df_orig) else: assert np.shares_memory(get_array(df, "a"), get_array(new_df, "a")) tm.assert_frame_equal(df, new_df) @pytest.mark.parametrize("dtype", [None, "int64", "Int64"]) @pytest.mark.parametrize("index", [None, [0, 1, 2]]) @pytest.mark.parametrize("columns", [None, ["a", "b"], ["a", "b", "c"]]) def test_dataframe_from_dict_of_series( request, using_copy_on_write, columns, index, dtype ): # Case: constructing a DataFrame from Series objects with copy=False # has to do a lazy following CoW rules # (the default for DataFrame(dict) is still to copy to ensure consolidation) s1 = Series([1, 2, 3]) s2 = Series([4, 5, 6]) s1_orig = s1.copy() expected = DataFrame( {"a": [1, 2, 3], "b": [4, 5, 6]}, index=index, columns=columns, dtype=dtype ) result = DataFrame( {"a": s1, "b": s2}, index=index, columns=columns, dtype=dtype, copy=False ) # the shallow copy still shares memory assert np.shares_memory(get_array(result, "a"), get_array(s1)) # mutating the new dataframe doesn't mutate original result.iloc[0, 0] = 10 if using_copy_on_write: assert not np.shares_memory(get_array(result, "a"), get_array(s1)) tm.assert_series_equal(s1, s1_orig) else: assert s1.iloc[0] == 10 # the same when modifying the parent series s1 = Series([1, 2, 3]) s2 = Series([4, 5, 6]) result = DataFrame( {"a": s1, "b": s2}, index=index, columns=columns, dtype=dtype, copy=False ) s1.iloc[0] = 10 if using_copy_on_write: assert not np.shares_memory(get_array(result, "a"), get_array(s1)) tm.assert_frame_equal(result, expected) else: assert result.iloc[0, 0] == 10 @pytest.mark.parametrize("dtype", [None, "int64"]) def test_dataframe_from_dict_of_series_with_reindex(dtype): # Case: constructing a DataFrame from Series objects with copy=False # and passing an index that requires an actual (no-view) reindex -> need # to ensure the result doesn't have refs set up to unnecessarily trigger # a copy on write s1 = Series([1, 2, 3]) s2 = Series([4, 5, 6]) df = DataFrame({"a": s1, "b": s2}, index=[1, 2, 3], dtype=dtype, copy=False) # df should own its memory, so mutating shouldn't trigger a copy arr_before = get_array(df, "a") assert not np.shares_memory(arr_before, get_array(s1)) df.iloc[0, 0] = 100 arr_after = get_array(df, "a") assert np.shares_memory(arr_before, arr_after) @pytest.mark.parametrize("cons", [Series, Index]) @pytest.mark.parametrize( "data, dtype", [([1, 2], None), ([1, 2], "int64"), (["a", "b"], None)] ) def test_dataframe_from_series_or_index(using_copy_on_write, data, dtype, cons): obj = cons(data, dtype=dtype) obj_orig = obj.copy() df = DataFrame(obj, dtype=dtype) assert np.shares_memory(get_array(obj), get_array(df, 0)) if using_copy_on_write: assert not df._mgr._has_no_reference(0) df.iloc[0, 0] = data[-1] if using_copy_on_write: tm.assert_equal(obj, obj_orig) @pytest.mark.parametrize("cons", [Series, Index]) def test_dataframe_from_series_or_index_different_dtype(using_copy_on_write, cons): obj = cons([1, 2], dtype="int64") df = DataFrame(obj, dtype="int32") assert not np.shares_memory(get_array(obj), get_array(df, 0)) if using_copy_on_write: assert df._mgr._has_no_reference(0) def test_dataframe_from_series_infer_datetime(using_copy_on_write): ser = Series([Timestamp("2019-12-31"), Timestamp("2020-12-31")], dtype=object) df = DataFrame(ser) assert not np.shares_memory(get_array(ser), get_array(df, 0)) if using_copy_on_write: assert df._mgr._has_no_reference(0) @pytest.mark.parametrize("index", [None, [0, 1, 2]]) def test_dataframe_from_dict_of_series_with_dtype(index): # Variant of above, but now passing a dtype that causes a copy # -> need to ensure the result doesn't have refs set up to unnecessarily # trigger a copy on write s1 = Series([1.0, 2.0, 3.0]) s2 = Series([4, 5, 6]) df = DataFrame({"a": s1, "b": s2}, index=index, dtype="int64", copy=False) # df should own its memory, so mutating shouldn't trigger a copy arr_before = get_array(df, "a") assert not np.shares_memory(arr_before, get_array(s1)) df.iloc[0, 0] = 100 arr_after = get_array(df, "a") assert np.shares_memory(arr_before, arr_after) @pytest.mark.parametrize("copy", [False, None, True]) def test_frame_from_numpy_array(using_copy_on_write, copy, using_array_manager): arr = np.array([[1, 2], [3, 4]]) df = DataFrame(arr, copy=copy) if ( using_copy_on_write and copy is not False or copy is True or (using_array_manager and copy is None) ): assert not np.shares_memory(get_array(df, 0), arr) else: assert np.shares_memory(get_array(df, 0), arr) def test_dataframe_from_records_with_dataframe(using_copy_on_write): df = DataFrame({"a": [1, 2, 3]}) df_orig = df.copy() df2 = DataFrame.from_records(df) if using_copy_on_write: assert not df._mgr._has_no_reference(0) assert np.shares_memory(get_array(df, "a"), get_array(df2, "a")) df2.iloc[0, 0] = 100 if using_copy_on_write: tm.assert_frame_equal(df, df_orig) else: tm.assert_frame_equal(df, df2)