""" Test extension array that has custom attribute information (not stored on the dtype). """ from __future__ import annotations import numbers import numpy as np from pandas._typing import type_t from pandas.core.dtypes.base import ExtensionDtype import pandas as pd from pandas.core.arrays import ExtensionArray class FloatAttrDtype(ExtensionDtype): type = float name = "float_attr" na_value = np.nan @classmethod def construct_array_type(cls) -> type_t[FloatAttrArray]: """ Return the array type associated with this dtype. Returns ------- type """ return FloatAttrArray class FloatAttrArray(ExtensionArray): dtype = FloatAttrDtype() __array_priority__ = 1000 def __init__(self, values, attr=None) -> None: if not isinstance(values, np.ndarray): raise TypeError("Need to pass a numpy array of float64 dtype as values") if not values.dtype == "float64": raise TypeError("Need to pass a numpy array of float64 dtype as values") self.data = values self.attr = attr @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): data = np.array(scalars, dtype="float64", copy=copy) return cls(data) def __getitem__(self, item): if isinstance(item, numbers.Integral): return self.data[item] else: # slice, list-like, mask item = pd.api.indexers.check_array_indexer(self, item) return type(self)(self.data[item], self.attr) def __len__(self) -> int: return len(self.data) def isna(self): return np.isnan(self.data) def take(self, indexer, allow_fill=False, fill_value=None): from pandas.api.extensions import take data = self.data if allow_fill and fill_value is None: fill_value = self.dtype.na_value result = take(data, indexer, fill_value=fill_value, allow_fill=allow_fill) return type(self)(result, self.attr) def copy(self): return type(self)(self.data.copy(), self.attr) @classmethod def _concat_same_type(cls, to_concat): data = np.concatenate([x.data for x in to_concat]) attr = to_concat[0].attr if len(to_concat) else None return cls(data, attr)