import re import numpy as np import pytest from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Index, MultiIndex, Series, Timestamp, ) import pandas._testing as tm @pytest.mark.parametrize( "msg,labels,level", [ (r"labels \[4\] not found in level", 4, "a"), (r"labels \[7\] not found in level", 7, "b"), ], ) def test_drop_raise_exception_if_labels_not_in_level(msg, labels, level): # GH 8594 mi = MultiIndex.from_arrays([[1, 2, 3], [4, 5, 6]], names=["a", "b"]) s = Series([10, 20, 30], index=mi) df = DataFrame([10, 20, 30], index=mi) with pytest.raises(KeyError, match=msg): s.drop(labels, level=level) with pytest.raises(KeyError, match=msg): df.drop(labels, level=level) @pytest.mark.parametrize("labels,level", [(4, "a"), (7, "b")]) def test_drop_errors_ignore(labels, level): # GH 8594 mi = MultiIndex.from_arrays([[1, 2, 3], [4, 5, 6]], names=["a", "b"]) s = Series([10, 20, 30], index=mi) df = DataFrame([10, 20, 30], index=mi) expected_s = s.drop(labels, level=level, errors="ignore") tm.assert_series_equal(s, expected_s) expected_df = df.drop(labels, level=level, errors="ignore") tm.assert_frame_equal(df, expected_df) def test_drop_with_non_unique_datetime_index_and_invalid_keys(): # GH 30399 # define dataframe with unique datetime index df = DataFrame( np.random.randn(5, 3), columns=["a", "b", "c"], index=pd.date_range("2012", freq="H", periods=5), ) # create dataframe with non-unique datetime index df = df.iloc[[0, 2, 2, 3]].copy() with pytest.raises(KeyError, match="not found in axis"): df.drop(["a", "b"]) # Dropping with labels not exist in the index class TestDataFrameDrop: def test_drop_names(self): df = DataFrame( [[1, 2, 3], [3, 4, 5], [5, 6, 7]], index=["a", "b", "c"], columns=["d", "e", "f"], ) df.index.name, df.columns.name = "first", "second" df_dropped_b = df.drop("b") df_dropped_e = df.drop("e", axis=1) df_inplace_b, df_inplace_e = df.copy(), df.copy() return_value = df_inplace_b.drop("b", inplace=True) assert return_value is None return_value = df_inplace_e.drop("e", axis=1, inplace=True) assert return_value is None for obj in (df_dropped_b, df_dropped_e, df_inplace_b, df_inplace_e): assert obj.index.name == "first" assert obj.columns.name == "second" assert list(df.columns) == ["d", "e", "f"] msg = r"\['g'\] not found in axis" with pytest.raises(KeyError, match=msg): df.drop(["g"]) with pytest.raises(KeyError, match=msg): df.drop(["g"], axis=1) # errors = 'ignore' dropped = df.drop(["g"], errors="ignore") expected = Index(["a", "b", "c"], name="first") tm.assert_index_equal(dropped.index, expected) dropped = df.drop(["b", "g"], errors="ignore") expected = Index(["a", "c"], name="first") tm.assert_index_equal(dropped.index, expected) dropped = df.drop(["g"], axis=1, errors="ignore") expected = Index(["d", "e", "f"], name="second") tm.assert_index_equal(dropped.columns, expected) dropped = df.drop(["d", "g"], axis=1, errors="ignore") expected = Index(["e", "f"], name="second") tm.assert_index_equal(dropped.columns, expected) # GH 16398 dropped = df.drop([], errors="ignore") expected = Index(["a", "b", "c"], name="first") tm.assert_index_equal(dropped.index, expected) def test_drop(self): simple = DataFrame({"A": [1, 2, 3, 4], "B": [0, 1, 2, 3]}) tm.assert_frame_equal(simple.drop("A", axis=1), simple[["B"]]) tm.assert_frame_equal(simple.drop(["A", "B"], axis="columns"), simple[[]]) tm.assert_frame_equal(simple.drop([0, 1, 3], axis=0), simple.loc[[2], :]) tm.assert_frame_equal(simple.drop([0, 3], axis="index"), simple.loc[[1, 2], :]) with pytest.raises(KeyError, match=r"\[5\] not found in axis"): simple.drop(5) with pytest.raises(KeyError, match=r"\['C'\] not found in axis"): simple.drop("C", axis=1) with pytest.raises(KeyError, match=r"\[5\] not found in axis"): simple.drop([1, 5]) with pytest.raises(KeyError, match=r"\['C'\] not found in axis"): simple.drop(["A", "C"], axis=1) # GH 42881 with pytest.raises(KeyError, match=r"\['C', 'D', 'F'\] not found in axis"): simple.drop(["C", "D", "F"], axis=1) # errors = 'ignore' tm.assert_frame_equal(simple.drop(5, errors="ignore"), simple) tm.assert_frame_equal( simple.drop([0, 5], errors="ignore"), simple.loc[[1, 2, 3], :] ) tm.assert_frame_equal(simple.drop("C", axis=1, errors="ignore"), simple) tm.assert_frame_equal( simple.drop(["A", "C"], axis=1, errors="ignore"), simple[["B"]] ) # non-unique - wheee! nu_df = DataFrame( list(zip(range(3), range(-3, 1), list("abc"))), columns=["a", "a", "b"] ) tm.assert_frame_equal(nu_df.drop("a", axis=1), nu_df[["b"]]) tm.assert_frame_equal(nu_df.drop("b", axis="columns"), nu_df["a"]) tm.assert_frame_equal(nu_df.drop([]), nu_df) # GH 16398 nu_df = nu_df.set_index(Index(["X", "Y", "X"])) nu_df.columns = list("abc") tm.assert_frame_equal(nu_df.drop("X", axis="rows"), nu_df.loc[["Y"], :]) tm.assert_frame_equal(nu_df.drop(["X", "Y"], axis=0), nu_df.loc[[], :]) # inplace cache issue # GH#5628 df = DataFrame(np.random.randn(10, 3), columns=list("abc")) expected = df[~(df.b > 0)] return_value = df.drop(labels=df[df.b > 0].index, inplace=True) assert return_value is None tm.assert_frame_equal(df, expected) def test_drop_multiindex_not_lexsorted(self): # GH#11640 # define the lexsorted version lexsorted_mi = MultiIndex.from_tuples( [("a", ""), ("b1", "c1"), ("b2", "c2")], names=["b", "c"] ) lexsorted_df = DataFrame([[1, 3, 4]], columns=lexsorted_mi) assert lexsorted_df.columns._is_lexsorted() # define the non-lexsorted version not_lexsorted_df = DataFrame( columns=["a", "b", "c", "d"], data=[[1, "b1", "c1", 3], [1, "b2", "c2", 4]] ) not_lexsorted_df = not_lexsorted_df.pivot_table( index="a", columns=["b", "c"], values="d" ) not_lexsorted_df = not_lexsorted_df.reset_index() assert not not_lexsorted_df.columns._is_lexsorted() # compare the results tm.assert_frame_equal(lexsorted_df, not_lexsorted_df) expected = lexsorted_df.drop("a", axis=1) with tm.assert_produces_warning(PerformanceWarning): result = not_lexsorted_df.drop("a", axis=1) tm.assert_frame_equal(result, expected) def test_drop_api_equivalence(self): # equivalence of the labels/axis and index/columns API's (GH#12392) df = DataFrame( [[1, 2, 3], [3, 4, 5], [5, 6, 7]], index=["a", "b", "c"], columns=["d", "e", "f"], ) res1 = df.drop("a") res2 = df.drop(index="a") tm.assert_frame_equal(res1, res2) res1 = df.drop("d", axis=1) res2 = df.drop(columns="d") tm.assert_frame_equal(res1, res2) res1 = df.drop(labels="e", axis=1) res2 = df.drop(columns="e") tm.assert_frame_equal(res1, res2) res1 = df.drop(["a"], axis=0) res2 = df.drop(index=["a"]) tm.assert_frame_equal(res1, res2) res1 = df.drop(["a"], axis=0).drop(["d"], axis=1) res2 = df.drop(index=["a"], columns=["d"]) tm.assert_frame_equal(res1, res2) msg = "Cannot specify both 'labels' and 'index'/'columns'" with pytest.raises(ValueError, match=msg): df.drop(labels="a", index="b") with pytest.raises(ValueError, match=msg): df.drop(labels="a", columns="b") msg = "Need to specify at least one of 'labels', 'index' or 'columns'" with pytest.raises(ValueError, match=msg): df.drop(axis=1) data = [[1, 2, 3], [1, 2, 3]] @pytest.mark.parametrize( "actual", [ DataFrame(data=data, index=["a", "a"]), DataFrame(data=data, index=["a", "b"]), DataFrame(data=data, index=["a", "b"]).set_index([0, 1]), DataFrame(data=data, index=["a", "a"]).set_index([0, 1]), ], ) def test_raise_on_drop_duplicate_index(self, actual): # GH#19186 level = 0 if isinstance(actual.index, MultiIndex) else None msg = re.escape("\"['c'] not found in axis\"") with pytest.raises(KeyError, match=msg): actual.drop("c", level=level, axis=0) with pytest.raises(KeyError, match=msg): actual.T.drop("c", level=level, axis=1) expected_no_err = actual.drop("c", axis=0, level=level, errors="ignore") tm.assert_frame_equal(expected_no_err, actual) expected_no_err = actual.T.drop("c", axis=1, level=level, errors="ignore") tm.assert_frame_equal(expected_no_err.T, actual) @pytest.mark.parametrize("index", [[1, 2, 3], [1, 1, 2]]) @pytest.mark.parametrize("drop_labels", [[], [1], [2]]) def test_drop_empty_list(self, index, drop_labels): # GH#21494 expected_index = [i for i in index if i not in drop_labels] frame = DataFrame(index=index).drop(drop_labels) tm.assert_frame_equal(frame, DataFrame(index=expected_index)) @pytest.mark.parametrize("index", [[1, 2, 3], [1, 2, 2]]) @pytest.mark.parametrize("drop_labels", [[1, 4], [4, 5]]) def test_drop_non_empty_list(self, index, drop_labels): # GH# 21494 with pytest.raises(KeyError, match="not found in axis"): DataFrame(index=index).drop(drop_labels) @pytest.mark.parametrize( "empty_listlike", [ [], {}, np.array([]), Series([], dtype="datetime64[ns]"), Index([]), DatetimeIndex([]), ], ) def test_drop_empty_listlike_non_unique_datetime_index(self, empty_listlike): # GH#27994 data = {"column_a": [5, 10], "column_b": ["one", "two"]} index = [Timestamp("2021-01-01"), Timestamp("2021-01-01")] df = DataFrame(data, index=index) # Passing empty list-like should return the same DataFrame. expected = df.copy() result = df.drop(empty_listlike) tm.assert_frame_equal(result, expected) def test_mixed_depth_drop(self): arrays = [ ["a", "top", "top", "routine1", "routine1", "routine2"], ["", "OD", "OD", "result1", "result2", "result1"], ["", "wx", "wy", "", "", ""], ] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(np.random.randn(4, 6), columns=index) result = df.drop("a", axis=1) expected = df.drop([("a", "", "")], axis=1) tm.assert_frame_equal(expected, result) result = df.drop(["top"], axis=1) expected = df.drop([("top", "OD", "wx")], axis=1) expected = expected.drop([("top", "OD", "wy")], axis=1) tm.assert_frame_equal(expected, result) result = df.drop(("top", "OD", "wx"), axis=1) expected = df.drop([("top", "OD", "wx")], axis=1) tm.assert_frame_equal(expected, result) expected = df.drop([("top", "OD", "wy")], axis=1) expected = df.drop("top", axis=1) result = df.drop("result1", level=1, axis=1) expected = df.drop( [("routine1", "result1", ""), ("routine2", "result1", "")], axis=1 ) tm.assert_frame_equal(expected, result) def test_drop_multiindex_other_level_nan(self): # GH#12754 df = ( DataFrame( { "A": ["one", "one", "two", "two"], "B": [np.nan, 0.0, 1.0, 2.0], "C": ["a", "b", "c", "c"], "D": [1, 2, 3, 4], } ) .set_index(["A", "B", "C"]) .sort_index() ) result = df.drop("c", level="C") expected = DataFrame( [2, 1], columns=["D"], index=MultiIndex.from_tuples( [("one", 0.0, "b"), ("one", np.nan, "a")], names=["A", "B", "C"] ), ) tm.assert_frame_equal(result, expected) def test_drop_nonunique(self): df = DataFrame( [ ["x-a", "x", "a", 1.5], ["x-a", "x", "a", 1.2], ["z-c", "z", "c", 3.1], ["x-a", "x", "a", 4.1], ["x-b", "x", "b", 5.1], ["x-b", "x", "b", 4.1], ["x-b", "x", "b", 2.2], ["y-a", "y", "a", 1.2], ["z-b", "z", "b", 2.1], ], columns=["var1", "var2", "var3", "var4"], ) grp_size = df.groupby("var1").size() drop_idx = grp_size.loc[grp_size == 1] idf = df.set_index(["var1", "var2", "var3"]) # it works! GH#2101 result = idf.drop(drop_idx.index, level=0).reset_index() expected = df[-df.var1.isin(drop_idx.index)] result.index = expected.index tm.assert_frame_equal(result, expected) def test_drop_level(self, multiindex_dataframe_random_data): frame = multiindex_dataframe_random_data result = frame.drop(["bar", "qux"], level="first") expected = frame.iloc[[0, 1, 2, 5, 6]] tm.assert_frame_equal(result, expected) result = frame.drop(["two"], level="second") expected = frame.iloc[[0, 2, 3, 6, 7, 9]] tm.assert_frame_equal(result, expected) result = frame.T.drop(["bar", "qux"], axis=1, level="first") expected = frame.iloc[[0, 1, 2, 5, 6]].T tm.assert_frame_equal(result, expected) result = frame.T.drop(["two"], axis=1, level="second") expected = frame.iloc[[0, 2, 3, 6, 7, 9]].T tm.assert_frame_equal(result, expected) def test_drop_level_nonunique_datetime(self): # GH#12701 idx = Index([2, 3, 4, 4, 5], name="id") idxdt = pd.to_datetime( [ "2016-03-23 14:00", "2016-03-23 15:00", "2016-03-23 16:00", "2016-03-23 16:00", "2016-03-23 17:00", ] ) df = DataFrame(np.arange(10).reshape(5, 2), columns=list("ab"), index=idx) df["tstamp"] = idxdt df = df.set_index("tstamp", append=True) ts = Timestamp("201603231600") assert df.index.is_unique is False result = df.drop(ts, level="tstamp") expected = df.loc[idx != 4] tm.assert_frame_equal(result, expected) def test_drop_tz_aware_timestamp_across_dst(self, frame_or_series): # GH#21761 start = Timestamp("2017-10-29", tz="Europe/Berlin") end = Timestamp("2017-10-29 04:00:00", tz="Europe/Berlin") index = pd.date_range(start, end, freq="15min") data = frame_or_series(data=[1] * len(index), index=index) result = data.drop(start) expected_start = Timestamp("2017-10-29 00:15:00", tz="Europe/Berlin") expected_idx = pd.date_range(expected_start, end, freq="15min") expected = frame_or_series(data=[1] * len(expected_idx), index=expected_idx) tm.assert_equal(result, expected) def test_drop_preserve_names(self): index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1], [1, 2, 3, 1, 2, 3]], names=["one", "two"] ) df = DataFrame(np.random.randn(6, 3), index=index) result = df.drop([(0, 2)]) assert result.index.names == ("one", "two") @pytest.mark.parametrize( "operation", ["__iadd__", "__isub__", "__imul__", "__ipow__"] ) @pytest.mark.parametrize("inplace", [False, True]) def test_inplace_drop_and_operation(self, operation, inplace): # GH#30484 df = DataFrame({"x": range(5)}) expected = df.copy() df["y"] = range(5) y = df["y"] with tm.assert_produces_warning(None): if inplace: df.drop("y", axis=1, inplace=inplace) else: df = df.drop("y", axis=1, inplace=inplace) # Perform operation and check result getattr(y, operation)(1) tm.assert_frame_equal(df, expected) def test_drop_with_non_unique_multiindex(self): # GH#36293 mi = MultiIndex.from_arrays([["x", "y", "x"], ["i", "j", "i"]]) df = DataFrame([1, 2, 3], index=mi) result = df.drop(index="x") expected = DataFrame([2], index=MultiIndex.from_arrays([["y"], ["j"]])) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("indexer", [("a", "a"), [("a", "a")]]) def test_drop_tuple_with_non_unique_multiindex(self, indexer): # GH#42771 idx = MultiIndex.from_product([["a", "b"], ["a", "a"]]) df = DataFrame({"x": range(len(idx))}, index=idx) result = df.drop(index=[("a", "a")]) expected = DataFrame( {"x": [2, 3]}, index=MultiIndex.from_tuples([("b", "a"), ("b", "a")]) ) tm.assert_frame_equal(result, expected) def test_drop_with_duplicate_columns(self): df = DataFrame( [[1, 5, 7.0], [1, 5, 7.0], [1, 5, 7.0]], columns=["bar", "a", "a"] ) result = df.drop(["a"], axis=1) expected = DataFrame([[1], [1], [1]], columns=["bar"]) tm.assert_frame_equal(result, expected) result = df.drop("a", axis=1) tm.assert_frame_equal(result, expected) def test_drop_with_duplicate_columns2(self): # drop buggy GH#6240 df = DataFrame( { "A": np.random.randn(5), "B": np.random.randn(5), "C": np.random.randn(5), "D": ["a", "b", "c", "d", "e"], } ) expected = df.take([0, 1, 1], axis=1) df2 = df.take([2, 0, 1, 2, 1], axis=1) result = df2.drop("C", axis=1) tm.assert_frame_equal(result, expected) def test_drop_inplace_no_leftover_column_reference(self): # GH 13934 df = DataFrame({"a": [1, 2, 3]}) a = df.a df.drop(["a"], axis=1, inplace=True) tm.assert_index_equal(df.columns, Index([], dtype="object")) a -= a.mean() tm.assert_index_equal(df.columns, Index([], dtype="object")) def test_drop_level_missing_label_multiindex(self): # GH 18561 df = DataFrame(index=MultiIndex.from_product([range(3), range(3)])) with pytest.raises(KeyError, match="labels \\[5\\] not found in level"): df.drop(5, level=0) @pytest.mark.parametrize("idx, level", [(["a", "b"], 0), (["a"], None)]) def test_drop_index_ea_dtype(self, any_numeric_ea_dtype, idx, level): # GH#45860 df = DataFrame( {"a": [1, 2, 2, pd.NA], "b": 100}, dtype=any_numeric_ea_dtype ).set_index(idx) result = df.drop(Index([2, pd.NA]), level=level) expected = DataFrame( {"a": [1], "b": 100}, dtype=any_numeric_ea_dtype ).set_index(idx) tm.assert_frame_equal(result, expected)