import datetime import dateutil import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Series, ) import pandas._testing as tm class TestDataFrameMissingData: def test_dropEmptyRows(self, float_frame): N = len(float_frame.index) mat = np.random.randn(N) mat[:5] = np.nan frame = DataFrame({"foo": mat}, index=float_frame.index) original = Series(mat, index=float_frame.index, name="foo") expected = original.dropna() inplace_frame1, inplace_frame2 = frame.copy(), frame.copy() smaller_frame = frame.dropna(how="all") # check that original was preserved tm.assert_series_equal(frame["foo"], original) return_value = inplace_frame1.dropna(how="all", inplace=True) tm.assert_series_equal(smaller_frame["foo"], expected) tm.assert_series_equal(inplace_frame1["foo"], expected) assert return_value is None smaller_frame = frame.dropna(how="all", subset=["foo"]) return_value = inplace_frame2.dropna(how="all", subset=["foo"], inplace=True) tm.assert_series_equal(smaller_frame["foo"], expected) tm.assert_series_equal(inplace_frame2["foo"], expected) assert return_value is None def test_dropIncompleteRows(self, float_frame): N = len(float_frame.index) mat = np.random.randn(N) mat[:5] = np.nan frame = DataFrame({"foo": mat}, index=float_frame.index) frame["bar"] = 5 original = Series(mat, index=float_frame.index, name="foo") inp_frame1, inp_frame2 = frame.copy(), frame.copy() smaller_frame = frame.dropna() tm.assert_series_equal(frame["foo"], original) return_value = inp_frame1.dropna(inplace=True) exp = Series(mat[5:], index=float_frame.index[5:], name="foo") tm.assert_series_equal(smaller_frame["foo"], exp) tm.assert_series_equal(inp_frame1["foo"], exp) assert return_value is None samesize_frame = frame.dropna(subset=["bar"]) tm.assert_series_equal(frame["foo"], original) assert (frame["bar"] == 5).all() return_value = inp_frame2.dropna(subset=["bar"], inplace=True) tm.assert_index_equal(samesize_frame.index, float_frame.index) tm.assert_index_equal(inp_frame2.index, float_frame.index) assert return_value is None def test_dropna(self): df = DataFrame(np.random.randn(6, 4)) df.iloc[:2, 2] = np.nan dropped = df.dropna(axis=1) expected = df.loc[:, [0, 1, 3]] inp = df.copy() return_value = inp.dropna(axis=1, inplace=True) tm.assert_frame_equal(dropped, expected) tm.assert_frame_equal(inp, expected) assert return_value is None dropped = df.dropna(axis=0) expected = df.loc[list(range(2, 6))] inp = df.copy() return_value = inp.dropna(axis=0, inplace=True) tm.assert_frame_equal(dropped, expected) tm.assert_frame_equal(inp, expected) assert return_value is None # threshold dropped = df.dropna(axis=1, thresh=5) expected = df.loc[:, [0, 1, 3]] inp = df.copy() return_value = inp.dropna(axis=1, thresh=5, inplace=True) tm.assert_frame_equal(dropped, expected) tm.assert_frame_equal(inp, expected) assert return_value is None dropped = df.dropna(axis=0, thresh=4) expected = df.loc[range(2, 6)] inp = df.copy() return_value = inp.dropna(axis=0, thresh=4, inplace=True) tm.assert_frame_equal(dropped, expected) tm.assert_frame_equal(inp, expected) assert return_value is None dropped = df.dropna(axis=1, thresh=4) tm.assert_frame_equal(dropped, df) dropped = df.dropna(axis=1, thresh=3) tm.assert_frame_equal(dropped, df) # subset dropped = df.dropna(axis=0, subset=[0, 1, 3]) inp = df.copy() return_value = inp.dropna(axis=0, subset=[0, 1, 3], inplace=True) tm.assert_frame_equal(dropped, df) tm.assert_frame_equal(inp, df) assert return_value is None # all dropped = df.dropna(axis=1, how="all") tm.assert_frame_equal(dropped, df) df[2] = np.nan dropped = df.dropna(axis=1, how="all") expected = df.loc[:, [0, 1, 3]] tm.assert_frame_equal(dropped, expected) # bad input msg = "No axis named 3 for object type DataFrame" with pytest.raises(ValueError, match=msg): df.dropna(axis=3) def test_drop_and_dropna_caching(self): # tst that cacher updates original = Series([1, 2, np.nan], name="A") expected = Series([1, 2], dtype=original.dtype, name="A") df = DataFrame({"A": original.values.copy()}) df2 = df.copy() df["A"].dropna() tm.assert_series_equal(df["A"], original) ser = df["A"] return_value = ser.dropna(inplace=True) tm.assert_series_equal(ser, expected) tm.assert_series_equal(df["A"], original) assert return_value is None df2["A"].drop([1]) tm.assert_series_equal(df2["A"], original) ser = df2["A"] return_value = ser.drop([1], inplace=True) tm.assert_series_equal(ser, original.drop([1])) tm.assert_series_equal(df2["A"], original) assert return_value is None def test_dropna_corner(self, float_frame): # bad input msg = "invalid how option: foo" with pytest.raises(ValueError, match=msg): float_frame.dropna(how="foo") # non-existent column - 8303 with pytest.raises(KeyError, match=r"^\['X'\]$"): float_frame.dropna(subset=["A", "X"]) def test_dropna_multiple_axes(self): df = DataFrame( [ [1, np.nan, 2, 3], [4, np.nan, 5, 6], [np.nan, np.nan, np.nan, np.nan], [7, np.nan, 8, 9], ] ) # GH20987 with pytest.raises(TypeError, match="supplying multiple axes"): df.dropna(how="all", axis=[0, 1]) with pytest.raises(TypeError, match="supplying multiple axes"): df.dropna(how="all", axis=(0, 1)) inp = df.copy() with pytest.raises(TypeError, match="supplying multiple axes"): inp.dropna(how="all", axis=(0, 1), inplace=True) def test_dropna_tz_aware_datetime(self): # GH13407 df = DataFrame() dt1 = datetime.datetime(2015, 1, 1, tzinfo=dateutil.tz.tzutc()) dt2 = datetime.datetime(2015, 2, 2, tzinfo=dateutil.tz.tzutc()) df["Time"] = [dt1] result = df.dropna(axis=0) expected = DataFrame({"Time": [dt1]}) tm.assert_frame_equal(result, expected) # Ex2 df = DataFrame({"Time": [dt1, None, np.nan, dt2]}) result = df.dropna(axis=0) expected = DataFrame([dt1, dt2], columns=["Time"], index=[0, 3]) tm.assert_frame_equal(result, expected) def test_dropna_categorical_interval_index(self): # GH 25087 ii = pd.IntervalIndex.from_breaks([0, 2.78, 3.14, 6.28]) ci = pd.CategoricalIndex(ii) df = DataFrame({"A": list("abc")}, index=ci) expected = df result = df.dropna() tm.assert_frame_equal(result, expected) def test_dropna_with_duplicate_columns(self): df = DataFrame( { "A": np.random.randn(5), "B": np.random.randn(5), "C": np.random.randn(5), "D": ["a", "b", "c", "d", "e"], } ) df.iloc[2, [0, 1, 2]] = np.nan df.iloc[0, 0] = np.nan df.iloc[1, 1] = np.nan df.iloc[:, 3] = np.nan expected = df.dropna(subset=["A", "B", "C"], how="all") expected.columns = ["A", "A", "B", "C"] df.columns = ["A", "A", "B", "C"] result = df.dropna(subset=["A", "C"], how="all") tm.assert_frame_equal(result, expected) def test_set_single_column_subset(self): # GH 41021 df = DataFrame({"A": [1, 2, 3], "B": list("abc"), "C": [4, np.NaN, 5]}) expected = DataFrame( {"A": [1, 3], "B": list("ac"), "C": [4.0, 5.0]}, index=[0, 2] ) result = df.dropna(subset="C") tm.assert_frame_equal(result, expected) def test_single_column_not_present_in_axis(self): # GH 41021 df = DataFrame({"A": [1, 2, 3]}) # Column not present with pytest.raises(KeyError, match="['D']"): df.dropna(subset="D", axis=0) def test_subset_is_nparray(self): # GH 41021 df = DataFrame({"A": [1, 2, np.NaN], "B": list("abc"), "C": [4, np.NaN, 5]}) expected = DataFrame({"A": [1.0], "B": ["a"], "C": [4.0]}) result = df.dropna(subset=np.array(["A", "C"])) tm.assert_frame_equal(result, expected) def test_no_nans_in_frame(self, axis): # GH#41965 df = DataFrame([[1, 2], [3, 4]], columns=pd.RangeIndex(0, 2)) expected = df.copy() result = df.dropna(axis=axis) tm.assert_frame_equal(result, expected, check_index_type=True) def test_how_thresh_param_incompatible(self): # GH46575 df = DataFrame([1, 2, pd.NA]) msg = "You cannot set both the how and thresh arguments at the same time" with pytest.raises(TypeError, match=msg): df.dropna(how="all", thresh=2) with pytest.raises(TypeError, match=msg): df.dropna(how="any", thresh=2) with pytest.raises(TypeError, match=msg): df.dropna(how=None, thresh=None) @pytest.mark.parametrize("val", [1, 1.5]) def test_dropna_ignore_index(self, val): # GH#31725 df = DataFrame({"a": [1, 2, val]}, index=[3, 2, 1]) result = df.dropna(ignore_index=True) expected = DataFrame({"a": [1, 2, val]}) tm.assert_frame_equal(result, expected) df.dropna(ignore_index=True, inplace=True) tm.assert_frame_equal(df, expected)