import numpy as np import pandas as pd from pandas import ( DataFrame, Index, ) import pandas._testing as tm def test_pipe(): # Test the pipe method of DataFrameGroupBy. # Issue #17871 random_state = np.random.RandomState(1234567890) df = DataFrame( { "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], "B": random_state.randn(8), "C": random_state.randn(8), } ) def f(dfgb): return dfgb.B.max() - dfgb.C.min().min() def square(srs): return srs**2 # Note that the transformations are # GroupBy -> Series # Series -> Series # This then chains the GroupBy.pipe and the # NDFrame.pipe methods result = df.groupby("A").pipe(f).pipe(square) index = Index(["bar", "foo"], dtype="object", name="A") expected = pd.Series([8.99110003361, 8.17516964785], name="B", index=index) tm.assert_series_equal(expected, result) def test_pipe_args(): # Test passing args to the pipe method of DataFrameGroupBy. # Issue #17871 df = DataFrame( { "group": ["A", "A", "B", "B", "C"], "x": [1.0, 2.0, 3.0, 2.0, 5.0], "y": [10.0, 100.0, 1000.0, -100.0, -1000.0], } ) def f(dfgb, arg1): filtered = dfgb.filter(lambda grp: grp.y.mean() > arg1, dropna=False) return filtered.groupby("group") def g(dfgb, arg2): return dfgb.sum() / dfgb.sum().sum() + arg2 def h(df, arg3): return df.x + df.y - arg3 result = df.groupby("group").pipe(f, 0).pipe(g, 10).pipe(h, 100) # Assert the results here index = Index(["A", "B"], name="group") expected = pd.Series([-79.5160891089, -78.4839108911], index=index) tm.assert_series_equal(result, expected) # test SeriesGroupby.pipe ser = pd.Series([1, 1, 2, 2, 3, 3]) result = ser.groupby(ser).pipe(lambda grp: grp.sum() * grp.count()) expected = pd.Series([4, 8, 12], index=Index([1, 2, 3], dtype=np.int64)) tm.assert_series_equal(result, expected)