""" Tests multithreading behaviour for reading and parsing files for each parser defined in parsers.py """ from contextlib import ExitStack from io import BytesIO from multiprocessing.pool import ThreadPool import numpy as np import pytest import pandas as pd from pandas import DataFrame import pandas._testing as tm # We'll probably always skip these for pyarrow # Maybe we'll add our own tests for pyarrow too pytestmark = pytest.mark.usefixtures("pyarrow_skip") def _construct_dataframe(num_rows): """ Construct a DataFrame for testing. Parameters ---------- num_rows : int The number of rows for our DataFrame. Returns ------- df : DataFrame """ df = DataFrame(np.random.rand(num_rows, 5), columns=list("abcde")) df["foo"] = "foo" df["bar"] = "bar" df["baz"] = "baz" df["date"] = pd.date_range("20000101 09:00:00", periods=num_rows, freq="s") df["int"] = np.arange(num_rows, dtype="int64") return df @pytest.mark.slow def test_multi_thread_string_io_read_csv(all_parsers): # see gh-11786 parser = all_parsers max_row_range = 10000 num_files = 100 bytes_to_df = [ "\n".join([f"{i:d},{i:d},{i:d}" for i in range(max_row_range)]).encode() for _ in range(num_files) ] # Read all files in many threads. with ExitStack() as stack: files = [stack.enter_context(BytesIO(b)) for b in bytes_to_df] pool = stack.enter_context(ThreadPool(8)) results = pool.map(parser.read_csv, files) first_result = results[0] for result in results: tm.assert_frame_equal(first_result, result) def _generate_multi_thread_dataframe(parser, path, num_rows, num_tasks): """ Generate a DataFrame via multi-thread. Parameters ---------- parser : BaseParser The parser object to use for reading the data. path : str The location of the CSV file to read. num_rows : int The number of rows to read per task. num_tasks : int The number of tasks to use for reading this DataFrame. Returns ------- df : DataFrame """ def reader(arg): """ Create a reader for part of the CSV. Parameters ---------- arg : tuple A tuple of the following: * start : int The starting row to start for parsing CSV * nrows : int The number of rows to read. Returns ------- df : DataFrame """ start, nrows = arg if not start: return parser.read_csv( path, index_col=0, header=0, nrows=nrows, parse_dates=["date"] ) return parser.read_csv( path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9], ) tasks = [ (num_rows * i // num_tasks, num_rows // num_tasks) for i in range(num_tasks) ] with ThreadPool(processes=num_tasks) as pool: results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe @pytest.mark.slow def test_multi_thread_path_multipart_read_csv(all_parsers): # see gh-11786 num_tasks = 4 num_rows = 100000 parser = all_parsers file_name = "__thread_pool_reader__.csv" df = _construct_dataframe(num_rows) with tm.ensure_clean(file_name) as path: df.to_csv(path) final_dataframe = _generate_multi_thread_dataframe( parser, path, num_rows, num_tasks ) tm.assert_frame_equal(df, final_dataframe)