""" Tests that NA values are properly handled during parsing for all of the parsers defined in parsers.py """ from io import StringIO import numpy as np import pytest from pandas._libs.parsers import STR_NA_VALUES from pandas import ( DataFrame, Index, MultiIndex, ) import pandas._testing as tm skip_pyarrow = pytest.mark.usefixtures("pyarrow_skip") xfail_pyarrow = pytest.mark.usefixtures("pyarrow_xfail") @skip_pyarrow def test_string_nas(all_parsers): parser = all_parsers data = """A,B,C a,b,c d,,f ,g,h """ result = parser.read_csv(StringIO(data)) expected = DataFrame( [["a", "b", "c"], ["d", np.nan, "f"], [np.nan, "g", "h"]], columns=["A", "B", "C"], ) tm.assert_frame_equal(result, expected) @skip_pyarrow def test_detect_string_na(all_parsers): parser = all_parsers data = """A,B foo,bar NA,baz NaN,nan """ expected = DataFrame( [["foo", "bar"], [np.nan, "baz"], [np.nan, np.nan]], columns=["A", "B"] ) result = parser.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) @skip_pyarrow @pytest.mark.parametrize( "na_values", [ ["-999.0", "-999"], [-999, -999.0], [-999.0, -999], ["-999.0"], ["-999"], [-999.0], [-999], ], ) @pytest.mark.parametrize( "data", [ """A,B -999,1.2 2,-999 3,4.5 """, """A,B -999,1.200 2,-999.000 3,4.500 """, ], ) def test_non_string_na_values(all_parsers, data, na_values): # see gh-3611: with an odd float format, we can't match # the string "999.0" exactly but still need float matching parser = all_parsers expected = DataFrame([[np.nan, 1.2], [2.0, np.nan], [3.0, 4.5]], columns=["A", "B"]) result = parser.read_csv(StringIO(data), na_values=na_values) tm.assert_frame_equal(result, expected) @skip_pyarrow def test_default_na_values(all_parsers): _NA_VALUES = { "-1.#IND", "1.#QNAN", "1.#IND", "-1.#QNAN", "#N/A", "N/A", "n/a", "NA", "", "#NA", "NULL", "null", "NaN", "nan", "-NaN", "-nan", "#N/A N/A", "", "None", } assert _NA_VALUES == STR_NA_VALUES parser = all_parsers nv = len(_NA_VALUES) def f(i, v): if i == 0: buf = "" elif i > 0: buf = "".join([","] * i) buf = f"{buf}{v}" if i < nv - 1: joined = "".join([","] * (nv - i - 1)) buf = f"{buf}{joined}" return buf data = StringIO("\n".join([f(i, v) for i, v in enumerate(_NA_VALUES)])) expected = DataFrame(np.nan, columns=range(nv), index=range(nv)) result = parser.read_csv(data, header=None) tm.assert_frame_equal(result, expected) @skip_pyarrow @pytest.mark.parametrize("na_values", ["baz", ["baz"]]) def test_custom_na_values(all_parsers, na_values): parser = all_parsers data = """A,B,C ignore,this,row 1,NA,3 -1.#IND,5,baz 7,8,NaN """ expected = DataFrame( [[1.0, np.nan, 3], [np.nan, 5, np.nan], [7, 8, np.nan]], columns=["A", "B", "C"] ) result = parser.read_csv(StringIO(data), na_values=na_values, skiprows=[1]) tm.assert_frame_equal(result, expected) def test_bool_na_values(all_parsers): data = """A,B,C True,False,True NA,True,False False,NA,True""" parser = all_parsers result = parser.read_csv(StringIO(data)) expected = DataFrame( { "A": np.array([True, np.nan, False], dtype=object), "B": np.array([False, True, np.nan], dtype=object), "C": [True, False, True], } ) tm.assert_frame_equal(result, expected) @skip_pyarrow def test_na_value_dict(all_parsers): data = """A,B,C foo,bar,NA bar,foo,foo foo,bar,NA bar,foo,foo""" parser = all_parsers df = parser.read_csv(StringIO(data), na_values={"A": ["foo"], "B": ["bar"]}) expected = DataFrame( { "A": [np.nan, "bar", np.nan, "bar"], "B": [np.nan, "foo", np.nan, "foo"], "C": [np.nan, "foo", np.nan, "foo"], } ) tm.assert_frame_equal(df, expected) @skip_pyarrow @pytest.mark.parametrize( "index_col,expected", [ ( [0], DataFrame({"b": [np.nan], "c": [1], "d": [5]}, index=Index([0], name="a")), ), ( [0, 2], DataFrame( {"b": [np.nan], "d": [5]}, index=MultiIndex.from_tuples([(0, 1)], names=["a", "c"]), ), ), ( ["a", "c"], DataFrame( {"b": [np.nan], "d": [5]}, index=MultiIndex.from_tuples([(0, 1)], names=["a", "c"]), ), ), ], ) def test_na_value_dict_multi_index(all_parsers, index_col, expected): data = """\ a,b,c,d 0,NA,1,5 """ parser = all_parsers result = parser.read_csv(StringIO(data), na_values=set(), index_col=index_col) tm.assert_frame_equal(result, expected) @skip_pyarrow @pytest.mark.parametrize( "kwargs,expected", [ ( {}, DataFrame( { "A": ["a", "b", np.nan, "d", "e", np.nan, "g"], "B": [1, 2, 3, 4, 5, 6, 7], "C": ["one", "two", "three", np.nan, "five", np.nan, "seven"], } ), ), ( {"na_values": {"A": [], "C": []}, "keep_default_na": False}, DataFrame( { "A": ["a", "b", "", "d", "e", "nan", "g"], "B": [1, 2, 3, 4, 5, 6, 7], "C": ["one", "two", "three", "nan", "five", "", "seven"], } ), ), ( {"na_values": ["a"], "keep_default_na": False}, DataFrame( { "A": [np.nan, "b", "", "d", "e", "nan", "g"], "B": [1, 2, 3, 4, 5, 6, 7], "C": ["one", "two", "three", "nan", "five", "", "seven"], } ), ), ( {"na_values": {"A": [], "C": []}}, DataFrame( { "A": ["a", "b", np.nan, "d", "e", np.nan, "g"], "B": [1, 2, 3, 4, 5, 6, 7], "C": ["one", "two", "three", np.nan, "five", np.nan, "seven"], } ), ), ], ) def test_na_values_keep_default(all_parsers, kwargs, expected): data = """\ A,B,C a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ parser = all_parsers result = parser.read_csv(StringIO(data), **kwargs) tm.assert_frame_equal(result, expected) @skip_pyarrow def test_no_na_values_no_keep_default(all_parsers): # see gh-4318: passing na_values=None and # keep_default_na=False yields 'None" as a na_value data = """\ A,B,C a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ parser = all_parsers result = parser.read_csv(StringIO(data), keep_default_na=False) expected = DataFrame( { "A": ["a", "b", "", "d", "e", "nan", "g"], "B": [1, 2, 3, 4, 5, 6, 7], "C": ["None", "two", "None", "nan", "five", "", "seven"], } ) tm.assert_frame_equal(result, expected) @skip_pyarrow def test_no_keep_default_na_dict_na_values(all_parsers): # see gh-19227 data = "a,b\n,2" parser = all_parsers result = parser.read_csv( StringIO(data), na_values={"b": ["2"]}, keep_default_na=False ) expected = DataFrame({"a": [""], "b": [np.nan]}) tm.assert_frame_equal(result, expected) @skip_pyarrow def test_no_keep_default_na_dict_na_scalar_values(all_parsers): # see gh-19227 # # Scalar values shouldn't cause the parsing to crash or fail. data = "a,b\n1,2" parser = all_parsers df = parser.read_csv(StringIO(data), na_values={"b": 2}, keep_default_na=False) expected = DataFrame({"a": [1], "b": [np.nan]}) tm.assert_frame_equal(df, expected) @skip_pyarrow @pytest.mark.parametrize("col_zero_na_values", [113125, "113125"]) def test_no_keep_default_na_dict_na_values_diff_reprs(all_parsers, col_zero_na_values): # see gh-19227 data = """\ 113125,"blah","/blaha",kjsdkj,412.166,225.874,214.008 729639,"qwer","",asdfkj,466.681,,252.373 """ parser = all_parsers expected = DataFrame( { 0: [np.nan, 729639.0], 1: [np.nan, "qwer"], 2: ["/blaha", np.nan], 3: ["kjsdkj", "asdfkj"], 4: [412.166, 466.681], 5: ["225.874", ""], 6: [np.nan, 252.373], } ) result = parser.read_csv( StringIO(data), header=None, keep_default_na=False, na_values={2: "", 6: "214.008", 1: "blah", 0: col_zero_na_values}, ) tm.assert_frame_equal(result, expected) @skip_pyarrow @pytest.mark.parametrize( "na_filter,row_data", [ (True, [[1, "A"], [np.nan, np.nan], [3, "C"]]), (False, [["1", "A"], ["nan", "B"], ["3", "C"]]), ], ) def test_na_values_na_filter_override(all_parsers, na_filter, row_data): data = """\ A,B 1,A nan,B 3,C """ parser = all_parsers result = parser.read_csv(StringIO(data), na_values=["B"], na_filter=na_filter) expected = DataFrame(row_data, columns=["A", "B"]) tm.assert_frame_equal(result, expected) @skip_pyarrow def test_na_trailing_columns(all_parsers): parser = all_parsers data = """Date,Currency,Symbol,Type,Units,UnitPrice,Cost,Tax 2012-03-14,USD,AAPL,BUY,1000 2012-05-12,USD,SBUX,SELL,500""" # Trailing columns should be all NaN. result = parser.read_csv(StringIO(data)) expected = DataFrame( [ ["2012-03-14", "USD", "AAPL", "BUY", 1000, np.nan, np.nan, np.nan], ["2012-05-12", "USD", "SBUX", "SELL", 500, np.nan, np.nan, np.nan], ], columns=[ "Date", "Currency", "Symbol", "Type", "Units", "UnitPrice", "Cost", "Tax", ], ) tm.assert_frame_equal(result, expected) @skip_pyarrow @pytest.mark.parametrize( "na_values,row_data", [ (1, [[np.nan, 2.0], [2.0, np.nan]]), ({"a": 2, "b": 1}, [[1.0, 2.0], [np.nan, np.nan]]), ], ) def test_na_values_scalar(all_parsers, na_values, row_data): # see gh-12224 parser = all_parsers names = ["a", "b"] data = "1,2\n2,1" result = parser.read_csv(StringIO(data), names=names, na_values=na_values) expected = DataFrame(row_data, columns=names) tm.assert_frame_equal(result, expected) @skip_pyarrow def test_na_values_dict_aliasing(all_parsers): parser = all_parsers na_values = {"a": 2, "b": 1} na_values_copy = na_values.copy() names = ["a", "b"] data = "1,2\n2,1" expected = DataFrame([[1.0, 2.0], [np.nan, np.nan]], columns=names) result = parser.read_csv(StringIO(data), names=names, na_values=na_values) tm.assert_frame_equal(result, expected) tm.assert_dict_equal(na_values, na_values_copy) @skip_pyarrow def test_na_values_dict_col_index(all_parsers): # see gh-14203 data = "a\nfoo\n1" parser = all_parsers na_values = {0: "foo"} result = parser.read_csv(StringIO(data), na_values=na_values) expected = DataFrame({"a": [np.nan, 1]}) tm.assert_frame_equal(result, expected) @skip_pyarrow @pytest.mark.parametrize( "data,kwargs,expected", [ ( str(2**63) + "\n" + str(2**63 + 1), {"na_values": [2**63]}, DataFrame([str(2**63), str(2**63 + 1)]), ), (str(2**63) + ",1" + "\n,2", {}, DataFrame([[str(2**63), 1], ["", 2]])), (str(2**63) + "\n1", {"na_values": [2**63]}, DataFrame([np.nan, 1])), ], ) def test_na_values_uint64(all_parsers, data, kwargs, expected): # see gh-14983 parser = all_parsers result = parser.read_csv(StringIO(data), header=None, **kwargs) tm.assert_frame_equal(result, expected) def test_empty_na_values_no_default_with_index(all_parsers): # see gh-15835 data = "a,1\nb,2" parser = all_parsers expected = DataFrame({"1": [2]}, index=Index(["b"], name="a")) result = parser.read_csv(StringIO(data), index_col=0, keep_default_na=False) tm.assert_frame_equal(result, expected) @skip_pyarrow @pytest.mark.parametrize( "na_filter,index_data", [(False, ["", "5"]), (True, [np.nan, 5.0])] ) def test_no_na_filter_on_index(all_parsers, na_filter, index_data): # see gh-5239 # # Don't parse NA-values in index unless na_filter=True parser = all_parsers data = "a,b,c\n1,,3\n4,5,6" expected = DataFrame({"a": [1, 4], "c": [3, 6]}, index=Index(index_data, name="b")) result = parser.read_csv(StringIO(data), index_col=[1], na_filter=na_filter) tm.assert_frame_equal(result, expected) def test_inf_na_values_with_int_index(all_parsers): # see gh-17128 parser = all_parsers data = "idx,col1,col2\n1,3,4\n2,inf,-inf" # Don't fail with OverflowError with inf's and integer index column. out = parser.read_csv(StringIO(data), index_col=[0], na_values=["inf", "-inf"]) expected = DataFrame( {"col1": [3, np.nan], "col2": [4, np.nan]}, index=Index([1, 2], name="idx") ) tm.assert_frame_equal(out, expected) @skip_pyarrow @pytest.mark.parametrize("na_filter", [True, False]) def test_na_values_with_dtype_str_and_na_filter(all_parsers, na_filter): # see gh-20377 parser = all_parsers data = "a,b,c\n1,,3\n4,5,6" # na_filter=True --> missing value becomes NaN. # na_filter=False --> missing value remains empty string. empty = np.nan if na_filter else "" expected = DataFrame({"a": ["1", "4"], "b": [empty, "5"], "c": ["3", "6"]}) result = parser.read_csv(StringIO(data), na_filter=na_filter, dtype=str) tm.assert_frame_equal(result, expected) @skip_pyarrow @pytest.mark.parametrize( "data, na_values", [ ("false,1\n,1\ntrue", None), ("false,1\nnull,1\ntrue", None), ("false,1\nnan,1\ntrue", None), ("false,1\nfoo,1\ntrue", "foo"), ("false,1\nfoo,1\ntrue", ["foo"]), ("false,1\nfoo,1\ntrue", {"a": "foo"}), ], ) def test_cast_NA_to_bool_raises_error(all_parsers, data, na_values): parser = all_parsers msg = ( "(Bool column has NA values in column [0a])|" "(cannot safely convert passed user dtype of " "bool for object dtyped data in column 0)" ) with pytest.raises(ValueError, match=msg): parser.read_csv( StringIO(data), header=None, names=["a", "b"], dtype={"a": "bool"}, na_values=na_values, ) @skip_pyarrow def test_str_nan_dropped(all_parsers): # see gh-21131 parser = all_parsers data = """File: small.csv,, 10010010233,0123,654 foo,,bar 01001000155,4530,898""" result = parser.read_csv( StringIO(data), header=None, names=["col1", "col2", "col3"], dtype={"col1": str, "col2": str, "col3": str}, ).dropna() expected = DataFrame( { "col1": ["10010010233", "01001000155"], "col2": ["0123", "4530"], "col3": ["654", "898"], }, index=[1, 3], ) tm.assert_frame_equal(result, expected) @skip_pyarrow def test_nan_multi_index(all_parsers): # GH 42446 parser = all_parsers data = "A,B,B\nX,Y,Z\n1,2,inf" result = parser.read_csv( StringIO(data), header=list(range(2)), na_values={("B", "Z"): "inf"} ) expected = DataFrame( { ("A", "X"): [1], ("B", "Y"): [2], ("B", "Z"): [np.nan], } ) tm.assert_frame_equal(result, expected) @xfail_pyarrow def test_bool_and_nan_to_bool(all_parsers): # GH#42808 parser = all_parsers data = """0 NaN True False """ with pytest.raises(ValueError, match="NA values"): parser.read_csv(StringIO(data), dtype="bool") def test_bool_and_nan_to_int(all_parsers): # GH#42808 parser = all_parsers data = """0 NaN True False """ with pytest.raises(ValueError, match="convert|NoneType"): parser.read_csv(StringIO(data), dtype="int") def test_bool_and_nan_to_float(all_parsers): # GH#42808 parser = all_parsers data = """0 NaN True False """ result = parser.read_csv(StringIO(data), dtype="float") expected = DataFrame.from_dict({"0": [np.nan, 1.0, 0.0]}) tm.assert_frame_equal(result, expected)