from io import BytesIO import os import tarfile import zipfile import numpy as np import pytest from pandas import ( DataFrame, date_range, read_csv, read_excel, read_json, read_parquet, ) import pandas._testing as tm from pandas.tests.io.test_compression import _compression_to_extension from pandas.util import _test_decorators as td @pytest.fixture def gcs_buffer(monkeypatch): """Emulate GCS using a binary buffer.""" import fsspec gcs_buffer = BytesIO() gcs_buffer.close = lambda: True class MockGCSFileSystem(fsspec.AbstractFileSystem): @staticmethod def open(*args, **kwargs): gcs_buffer.seek(0) return gcs_buffer def ls(self, path, **kwargs): # needed for pyarrow return [{"name": path, "type": "file"}] # Overwrites the default implementation from gcsfs to our mock class fsspec.register_implementation("gs", MockGCSFileSystem, clobber=True) return gcs_buffer @td.skip_if_no("gcsfs") @pytest.mark.parametrize("format", ["csv", "json", "parquet", "excel", "markdown"]) def test_to_read_gcs(gcs_buffer, format): """ Test that many to/read functions support GCS. GH 33987 """ df1 = DataFrame( { "int": [1, 3], "float": [2.0, np.nan], "str": ["t", "s"], "dt": date_range("2018-06-18", periods=2), } ) path = f"gs://test/test.{format}" if format == "csv": df1.to_csv(path, index=True) df2 = read_csv(path, parse_dates=["dt"], index_col=0) elif format == "excel": path = "gs://test/test.xlsx" df1.to_excel(path) df2 = read_excel(path, parse_dates=["dt"], index_col=0) elif format == "json": df1.to_json(path) df2 = read_json(path, convert_dates=["dt"]) elif format == "parquet": pytest.importorskip("pyarrow") df1.to_parquet(path) df2 = read_parquet(path) elif format == "markdown": pytest.importorskip("tabulate") df1.to_markdown(path) df2 = df1 tm.assert_frame_equal(df1, df2) def assert_equal_zip_safe(result: bytes, expected: bytes, compression: str): """ For zip compression, only compare the CRC-32 checksum of the file contents to avoid checking the time-dependent last-modified timestamp which in some CI builds is off-by-one See https://en.wikipedia.org/wiki/ZIP_(file_format)#File_headers """ if compression == "zip": # Only compare the CRC checksum of the file contents with zipfile.ZipFile(BytesIO(result)) as exp, zipfile.ZipFile( BytesIO(expected) ) as res: for res_info, exp_info in zip(res.infolist(), exp.infolist()): assert res_info.CRC == exp_info.CRC elif compression == "tar": with tarfile.open(fileobj=BytesIO(result)) as tar_exp, tarfile.open( fileobj=BytesIO(expected) ) as tar_res: for tar_res_info, tar_exp_info in zip( tar_res.getmembers(), tar_exp.getmembers() ): actual_file = tar_res.extractfile(tar_res_info) expected_file = tar_exp.extractfile(tar_exp_info) assert (actual_file is None) == (expected_file is None) if actual_file is not None and expected_file is not None: assert actual_file.read() == expected_file.read() else: assert result == expected @td.skip_if_no("gcsfs") @pytest.mark.parametrize("encoding", ["utf-8", "cp1251"]) def test_to_csv_compression_encoding_gcs(gcs_buffer, compression_only, encoding): """ Compression and encoding should with GCS. GH 35677 (to_csv, compression), GH 26124 (to_csv, encoding), and GH 32392 (read_csv, encoding) """ df = tm.makeDataFrame() # reference of compressed and encoded file compression = {"method": compression_only} if compression_only == "gzip": compression["mtime"] = 1 # be reproducible buffer = BytesIO() df.to_csv(buffer, compression=compression, encoding=encoding, mode="wb") # write compressed file with explicit compression path_gcs = "gs://test/test.csv" df.to_csv(path_gcs, compression=compression, encoding=encoding) res = gcs_buffer.getvalue() expected = buffer.getvalue() assert_equal_zip_safe(res, expected, compression_only) read_df = read_csv( path_gcs, index_col=0, compression=compression_only, encoding=encoding ) tm.assert_frame_equal(df, read_df) # write compressed file with implicit compression file_ext = _compression_to_extension[compression_only] compression["method"] = "infer" path_gcs += f".{file_ext}" df.to_csv(path_gcs, compression=compression, encoding=encoding) res = gcs_buffer.getvalue() expected = buffer.getvalue() assert_equal_zip_safe(res, expected, compression_only) read_df = read_csv(path_gcs, index_col=0, compression="infer", encoding=encoding) tm.assert_frame_equal(df, read_df) @td.skip_if_no("fastparquet") @td.skip_if_no("gcsfs") def test_to_parquet_gcs_new_file(monkeypatch, tmpdir): """Regression test for writing to a not-yet-existent GCS Parquet file.""" from fsspec import AbstractFileSystem df1 = DataFrame( { "int": [1, 3], "float": [2.0, np.nan], "str": ["t", "s"], "dt": date_range("2018-06-18", periods=2), } ) class MockGCSFileSystem(AbstractFileSystem): def open(self, path, mode="r", *args): if "w" not in mode: raise FileNotFoundError return open(os.path.join(tmpdir, "test.parquet"), mode) monkeypatch.setattr("gcsfs.GCSFileSystem", MockGCSFileSystem) df1.to_parquet( "gs://test/test.csv", index=True, engine="fastparquet", compression=None ) @td.skip_if_installed("gcsfs") def test_gcs_not_present_exception(): with tm.external_error_raised(ImportError): read_csv("gs://test/test.csv")