import numpy as np import pytest from pandas._libs import lib import pandas as pd from pandas import ( Index, MultiIndex, ) import pandas._testing as tm @pytest.mark.parametrize( "input_index, input_columns, input_values, " "expected_values, expected_columns, expected_index", [ ( ["lev4"], "lev3", "values", [ [0.0, np.nan], [np.nan, 1.0], [2.0, np.nan], [np.nan, 3.0], [4.0, np.nan], [np.nan, 5.0], [6.0, np.nan], [np.nan, 7.0], ], Index([1, 2], name="lev3"), Index([1, 2, 3, 4, 5, 6, 7, 8], name="lev4"), ), ( ["lev4"], "lev3", lib.NoDefault, [ [1.0, np.nan, 1.0, np.nan, 0.0, np.nan], [np.nan, 1.0, np.nan, 1.0, np.nan, 1.0], [1.0, np.nan, 2.0, np.nan, 2.0, np.nan], [np.nan, 1.0, np.nan, 2.0, np.nan, 3.0], [2.0, np.nan, 1.0, np.nan, 4.0, np.nan], [np.nan, 2.0, np.nan, 1.0, np.nan, 5.0], [2.0, np.nan, 2.0, np.nan, 6.0, np.nan], [np.nan, 2.0, np.nan, 2.0, np.nan, 7.0], ], MultiIndex.from_tuples( [ ("lev1", 1), ("lev1", 2), ("lev2", 1), ("lev2", 2), ("values", 1), ("values", 2), ], names=[None, "lev3"], ), Index([1, 2, 3, 4, 5, 6, 7, 8], name="lev4"), ), ( ["lev1", "lev2"], "lev3", "values", [[0, 1], [2, 3], [4, 5], [6, 7]], Index([1, 2], name="lev3"), MultiIndex.from_tuples( [(1, 1), (1, 2), (2, 1), (2, 2)], names=["lev1", "lev2"] ), ), ( ["lev1", "lev2"], "lev3", lib.NoDefault, [[1, 2, 0, 1], [3, 4, 2, 3], [5, 6, 4, 5], [7, 8, 6, 7]], MultiIndex.from_tuples( [("lev4", 1), ("lev4", 2), ("values", 1), ("values", 2)], names=[None, "lev3"], ), MultiIndex.from_tuples( [(1, 1), (1, 2), (2, 1), (2, 2)], names=["lev1", "lev2"] ), ), ], ) def test_pivot_list_like_index( input_index, input_columns, input_values, expected_values, expected_columns, expected_index, ): # GH 21425, test when index is given a list df = pd.DataFrame( { "lev1": [1, 1, 1, 1, 2, 2, 2, 2], "lev2": [1, 1, 2, 2, 1, 1, 2, 2], "lev3": [1, 2, 1, 2, 1, 2, 1, 2], "lev4": [1, 2, 3, 4, 5, 6, 7, 8], "values": [0, 1, 2, 3, 4, 5, 6, 7], } ) result = df.pivot(index=input_index, columns=input_columns, values=input_values) expected = pd.DataFrame( expected_values, columns=expected_columns, index=expected_index ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "input_index, input_columns, input_values, " "expected_values, expected_columns, expected_index", [ ( "lev4", ["lev3"], "values", [ [0.0, np.nan], [np.nan, 1.0], [2.0, np.nan], [np.nan, 3.0], [4.0, np.nan], [np.nan, 5.0], [6.0, np.nan], [np.nan, 7.0], ], Index([1, 2], name="lev3"), Index([1, 2, 3, 4, 5, 6, 7, 8], name="lev4"), ), ( ["lev1", "lev2"], ["lev3"], "values", [[0, 1], [2, 3], [4, 5], [6, 7]], Index([1, 2], name="lev3"), MultiIndex.from_tuples( [(1, 1), (1, 2), (2, 1), (2, 2)], names=["lev1", "lev2"] ), ), ( ["lev1"], ["lev2", "lev3"], "values", [[0, 1, 2, 3], [4, 5, 6, 7]], MultiIndex.from_tuples( [(1, 1), (1, 2), (2, 1), (2, 2)], names=["lev2", "lev3"] ), Index([1, 2], name="lev1"), ), ( ["lev1", "lev2"], ["lev3", "lev4"], "values", [ [0.0, 1.0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, 2.0, 3.0, np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan, 4.0, 5.0, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 6.0, 7.0], ], MultiIndex.from_tuples( [(1, 1), (2, 2), (1, 3), (2, 4), (1, 5), (2, 6), (1, 7), (2, 8)], names=["lev3", "lev4"], ), MultiIndex.from_tuples( [(1, 1), (1, 2), (2, 1), (2, 2)], names=["lev1", "lev2"] ), ), ], ) def test_pivot_list_like_columns( input_index, input_columns, input_values, expected_values, expected_columns, expected_index, ): # GH 21425, test when columns is given a list df = pd.DataFrame( { "lev1": [1, 1, 1, 1, 2, 2, 2, 2], "lev2": [1, 1, 2, 2, 1, 1, 2, 2], "lev3": [1, 2, 1, 2, 1, 2, 1, 2], "lev4": [1, 2, 3, 4, 5, 6, 7, 8], "values": [0, 1, 2, 3, 4, 5, 6, 7], } ) result = df.pivot(index=input_index, columns=input_columns, values=input_values) expected = pd.DataFrame( expected_values, columns=expected_columns, index=expected_index ) tm.assert_frame_equal(result, expected) def test_pivot_multiindexed_rows_and_cols(using_array_manager): # GH 36360 df = pd.DataFrame( data=np.arange(12).reshape(4, 3), columns=MultiIndex.from_tuples( [(0, 0), (0, 1), (0, 2)], names=["col_L0", "col_L1"] ), index=MultiIndex.from_tuples( [(0, 0, 0), (0, 0, 1), (1, 1, 1), (1, 0, 0)], names=["idx_L0", "idx_L1", "idx_L2"], ), ) res = df.pivot_table( index=["idx_L0"], columns=["idx_L1"], values=[(0, 1)], aggfunc=lambda col: col.values.sum(), ) expected = pd.DataFrame( data=[[5, np.nan], [10, 7.0]], columns=MultiIndex.from_tuples( [(0, 1, 0), (0, 1, 1)], names=["col_L0", "col_L1", "idx_L1"] ), index=Index([0, 1], dtype="int64", name="idx_L0"), ) if not using_array_manager: # BlockManager does not preserve the dtypes expected = expected.astype("float64") tm.assert_frame_equal(res, expected) def test_pivot_df_multiindex_index_none(): # GH 23955 df = pd.DataFrame( [ ["A", "A1", "label1", 1], ["A", "A2", "label2", 2], ["B", "A1", "label1", 3], ["B", "A2", "label2", 4], ], columns=["index_1", "index_2", "label", "value"], ) df = df.set_index(["index_1", "index_2"]) result = df.pivot(columns="label", values="value") expected = pd.DataFrame( [[1.0, np.nan], [np.nan, 2.0], [3.0, np.nan], [np.nan, 4.0]], index=df.index, columns=Index(["label1", "label2"], name="label"), ) tm.assert_frame_equal(result, expected)