""" The :mod:`sklearn.covariance` module includes methods and algorithms to robustly estimate the covariance of features given a set of points. The precision matrix defined as the inverse of the covariance is also estimated. Covariance estimation is closely related to the theory of Gaussian Graphical Models. """ from ._empirical_covariance import ( empirical_covariance, EmpiricalCovariance, log_likelihood, ) from ._shrunk_covariance import ( shrunk_covariance, ShrunkCovariance, ledoit_wolf, ledoit_wolf_shrinkage, LedoitWolf, oas, OAS, ) from ._robust_covariance import fast_mcd, MinCovDet from ._graph_lasso import graphical_lasso, GraphicalLasso, GraphicalLassoCV from ._elliptic_envelope import EllipticEnvelope __all__ = [ "EllipticEnvelope", "EmpiricalCovariance", "GraphicalLasso", "GraphicalLassoCV", "LedoitWolf", "MinCovDet", "OAS", "ShrunkCovariance", "empirical_covariance", "fast_mcd", "graphical_lasso", "ledoit_wolf", "ledoit_wolf_shrinkage", "log_likelihood", "oas", "shrunk_covariance", ]