from __future__ import annotations import numpy as np from pandas.core.dtypes.base import register_extension_dtype from pandas.core.dtypes.common import is_float_dtype from pandas.core.arrays.numeric import ( NumericArray, NumericDtype, ) class FloatingDtype(NumericDtype): """ An ExtensionDtype to hold a single size of floating dtype. These specific implementations are subclasses of the non-public FloatingDtype. For example we have Float32Dtype to represent float32. The attributes name & type are set when these subclasses are created. """ _default_np_dtype = np.dtype(np.float64) _checker = is_float_dtype @classmethod def construct_array_type(cls) -> type[FloatingArray]: """ Return the array type associated with this dtype. Returns ------- type """ return FloatingArray @classmethod def _str_to_dtype_mapping(cls): return FLOAT_STR_TO_DTYPE @classmethod def _safe_cast(cls, values: np.ndarray, dtype: np.dtype, copy: bool) -> np.ndarray: """ Safely cast the values to the given dtype. "safe" in this context means the casting is lossless. """ # This is really only here for compatibility with IntegerDtype # Here for compat with IntegerDtype return values.astype(dtype, copy=copy) class FloatingArray(NumericArray): """ Array of floating (optional missing) values. .. versionadded:: 1.2.0 .. warning:: FloatingArray is currently experimental, and its API or internal implementation may change without warning. Especially the behaviour regarding NaN (distinct from NA missing values) is subject to change. We represent a FloatingArray with 2 numpy arrays: - data: contains a numpy float array of the appropriate dtype - mask: a boolean array holding a mask on the data, True is missing To construct an FloatingArray from generic array-like input, use :func:`pandas.array` with one of the float dtypes (see examples). See :ref:`integer_na` for more. Parameters ---------- values : numpy.ndarray A 1-d float-dtype array. mask : numpy.ndarray A 1-d boolean-dtype array indicating missing values. copy : bool, default False Whether to copy the `values` and `mask`. Attributes ---------- None Methods ------- None Returns ------- FloatingArray Examples -------- Create an FloatingArray with :func:`pandas.array`: >>> pd.array([0.1, None, 0.3], dtype=pd.Float32Dtype()) [0.1, , 0.3] Length: 3, dtype: Float32 String aliases for the dtypes are also available. They are capitalized. >>> pd.array([0.1, None, 0.3], dtype="Float32") [0.1, , 0.3] Length: 3, dtype: Float32 """ _dtype_cls = FloatingDtype # The value used to fill '_data' to avoid upcasting _internal_fill_value = np.nan # Fill values used for any/all # Incompatible types in assignment (expression has type "float", base class # "BaseMaskedArray" defined the type as "") _truthy_value = 1.0 # type: ignore[assignment] _falsey_value = 0.0 # type: ignore[assignment] _dtype_docstring = """ An ExtensionDtype for {dtype} data. This dtype uses ``pd.NA`` as missing value indicator. Attributes ---------- None Methods ------- None """ # create the Dtype @register_extension_dtype class Float32Dtype(FloatingDtype): type = np.float32 name = "Float32" __doc__ = _dtype_docstring.format(dtype="float32") @register_extension_dtype class Float64Dtype(FloatingDtype): type = np.float64 name = "Float64" __doc__ = _dtype_docstring.format(dtype="float64") FLOAT_STR_TO_DTYPE = { "float32": Float32Dtype(), "float64": Float64Dtype(), }