""" This file contains a minimal set of tests for compliance with the extension array interface test suite, and should contain no other tests. The test suite for the full functionality of the array is located in `pandas/tests/arrays/`. The tests in this file are inherited from the BaseExtensionTests, and only minimal tweaks should be applied to get the tests passing (by overwriting a parent method). Additional tests should either be added to one of the BaseExtensionTests classes (if they are relevant for the extension interface for all dtypes), or be added to the array-specific tests in `pandas/tests/arrays/`. """ from datetime import ( date, datetime, time, timedelta, ) from decimal import Decimal from io import ( BytesIO, StringIO, ) import operator import pickle import re import numpy as np import pytest from pandas._libs import lib from pandas.compat import ( PY311, is_ci_environment, is_platform_windows, pa_version_under7p0, pa_version_under8p0, pa_version_under9p0, pa_version_under11p0, ) from pandas.errors import PerformanceWarning from pandas.core.dtypes.common import is_any_int_dtype from pandas.core.dtypes.dtypes import CategoricalDtypeType import pandas as pd import pandas._testing as tm from pandas.api.types import ( is_bool_dtype, is_float_dtype, is_integer_dtype, is_numeric_dtype, is_signed_integer_dtype, is_string_dtype, is_unsigned_integer_dtype, ) from pandas.tests.extension import base pa = pytest.importorskip("pyarrow", minversion="7.0.0") from pandas.core.arrays.arrow.array import ArrowExtensionArray from pandas.core.arrays.arrow.dtype import ArrowDtype # isort:skip @pytest.fixture(params=tm.ALL_PYARROW_DTYPES, ids=str) def dtype(request): return ArrowDtype(pyarrow_dtype=request.param) @pytest.fixture def data(dtype): pa_dtype = dtype.pyarrow_dtype if pa.types.is_boolean(pa_dtype): data = [True, False] * 4 + [None] + [True, False] * 44 + [None] + [True, False] elif pa.types.is_floating(pa_dtype): data = [1.0, 0.0] * 4 + [None] + [-2.0, -1.0] * 44 + [None] + [0.5, 99.5] elif pa.types.is_signed_integer(pa_dtype): data = [1, 0] * 4 + [None] + [-2, -1] * 44 + [None] + [1, 99] elif pa.types.is_unsigned_integer(pa_dtype): data = [1, 0] * 4 + [None] + [2, 1] * 44 + [None] + [1, 99] elif pa.types.is_decimal(pa_dtype): data = ( [Decimal("1"), Decimal("0.0")] * 4 + [None] + [Decimal("-2.0"), Decimal("-1.0")] * 44 + [None] + [Decimal("0.5"), Decimal("33.123")] ) elif pa.types.is_date(pa_dtype): data = ( [date(2022, 1, 1), date(1999, 12, 31)] * 4 + [None] + [date(2022, 1, 1), date(2022, 1, 1)] * 44 + [None] + [date(1999, 12, 31), date(1999, 12, 31)] ) elif pa.types.is_timestamp(pa_dtype): data = ( [datetime(2020, 1, 1, 1, 1, 1, 1), datetime(1999, 1, 1, 1, 1, 1, 1)] * 4 + [None] + [datetime(2020, 1, 1, 1), datetime(1999, 1, 1, 1)] * 44 + [None] + [datetime(2020, 1, 1), datetime(1999, 1, 1)] ) elif pa.types.is_duration(pa_dtype): data = ( [timedelta(1), timedelta(1, 1)] * 4 + [None] + [timedelta(-1), timedelta(0)] * 44 + [None] + [timedelta(-10), timedelta(10)] ) elif pa.types.is_time(pa_dtype): data = ( [time(12, 0), time(0, 12)] * 4 + [None] + [time(0, 0), time(1, 1)] * 44 + [None] + [time(0, 5), time(5, 0)] ) elif pa.types.is_string(pa_dtype): data = ["a", "b"] * 4 + [None] + ["1", "2"] * 44 + [None] + ["!", ">"] elif pa.types.is_binary(pa_dtype): data = [b"a", b"b"] * 4 + [None] + [b"1", b"2"] * 44 + [None] + [b"!", b">"] else: raise NotImplementedError return pd.array(data, dtype=dtype) @pytest.fixture def data_missing(data): """Length-2 array with [NA, Valid]""" return type(data)._from_sequence([None, data[0]], dtype=data.dtype) @pytest.fixture(params=["data", "data_missing"]) def all_data(request, data, data_missing): """Parametrized fixture returning 'data' or 'data_missing' integer arrays. Used to test dtype conversion with and without missing values. """ if request.param == "data": return data elif request.param == "data_missing": return data_missing @pytest.fixture def data_for_grouping(dtype): """ Data for factorization, grouping, and unique tests. Expected to be like [B, B, NA, NA, A, A, B, C] Where A < B < C and NA is missing """ pa_dtype = dtype.pyarrow_dtype if pa.types.is_boolean(pa_dtype): A = False B = True C = True elif pa.types.is_floating(pa_dtype): A = -1.1 B = 0.0 C = 1.1 elif pa.types.is_signed_integer(pa_dtype): A = -1 B = 0 C = 1 elif pa.types.is_unsigned_integer(pa_dtype): A = 0 B = 1 C = 10 elif pa.types.is_date(pa_dtype): A = date(1999, 12, 31) B = date(2010, 1, 1) C = date(2022, 1, 1) elif pa.types.is_timestamp(pa_dtype): A = datetime(1999, 1, 1, 1, 1, 1, 1) B = datetime(2020, 1, 1) C = datetime(2020, 1, 1, 1) elif pa.types.is_duration(pa_dtype): A = timedelta(-1) B = timedelta(0) C = timedelta(1, 4) elif pa.types.is_time(pa_dtype): A = time(0, 0) B = time(0, 12) C = time(12, 12) elif pa.types.is_string(pa_dtype): A = "a" B = "b" C = "c" elif pa.types.is_binary(pa_dtype): A = b"a" B = b"b" C = b"c" elif pa.types.is_decimal(pa_dtype): A = Decimal("-1.1") B = Decimal("0.0") C = Decimal("1.1") else: raise NotImplementedError return pd.array([B, B, None, None, A, A, B, C], dtype=dtype) @pytest.fixture def data_for_sorting(data_for_grouping): """ Length-3 array with a known sort order. This should be three items [B, C, A] with A < B < C """ return type(data_for_grouping)._from_sequence( [data_for_grouping[0], data_for_grouping[7], data_for_grouping[4]], dtype=data_for_grouping.dtype, ) @pytest.fixture def data_missing_for_sorting(data_for_grouping): """ Length-3 array with a known sort order. This should be three items [B, NA, A] with A < B and NA missing. """ return type(data_for_grouping)._from_sequence( [data_for_grouping[0], data_for_grouping[2], data_for_grouping[4]], dtype=data_for_grouping.dtype, ) @pytest.fixture def data_for_twos(data): """Length-100 array in which all the elements are two.""" pa_dtype = data.dtype.pyarrow_dtype if pa.types.is_integer(pa_dtype) or pa.types.is_floating(pa_dtype): return pd.array([2] * 100, dtype=data.dtype) # tests will be xfailed where 2 is not a valid scalar for pa_dtype return data @pytest.fixture def na_value(): """The scalar missing value for this type. Default 'None'""" return pd.NA class TestBaseCasting(base.BaseCastingTests): def test_astype_str(self, data, request): pa_dtype = data.dtype.pyarrow_dtype if pa.types.is_binary(pa_dtype): request.node.add_marker( pytest.mark.xfail( reason=f"For {pa_dtype} .astype(str) decodes.", ) ) super().test_astype_str(data) class TestConstructors(base.BaseConstructorsTests): def test_from_dtype(self, data, request): pa_dtype = data.dtype.pyarrow_dtype if pa.types.is_string(pa_dtype) or pa.types.is_decimal(pa_dtype): if pa.types.is_string(pa_dtype): reason = "ArrowDtype(pa.string()) != StringDtype('pyarrow')" else: reason = f"pyarrow.type_for_alias cannot infer {pa_dtype}" request.node.add_marker( pytest.mark.xfail( reason=reason, ) ) super().test_from_dtype(data) def test_from_sequence_pa_array(self, data): # https://github.com/pandas-dev/pandas/pull/47034#discussion_r955500784 # data._data = pa.ChunkedArray result = type(data)._from_sequence(data._data) tm.assert_extension_array_equal(result, data) assert isinstance(result._data, pa.ChunkedArray) result = type(data)._from_sequence(data._data.combine_chunks()) tm.assert_extension_array_equal(result, data) assert isinstance(result._data, pa.ChunkedArray) def test_from_sequence_pa_array_notimplemented(self, request): with pytest.raises(NotImplementedError, match="Converting strings to"): ArrowExtensionArray._from_sequence_of_strings( ["12-1"], dtype=pa.month_day_nano_interval() ) def test_from_sequence_of_strings_pa_array(self, data, request): pa_dtype = data.dtype.pyarrow_dtype if pa.types.is_time64(pa_dtype) and pa_dtype.equals("time64[ns]") and not PY311: request.node.add_marker( pytest.mark.xfail( reason="Nanosecond time parsing not supported.", ) ) elif pa_version_under11p0 and ( pa.types.is_duration(pa_dtype) or pa.types.is_decimal(pa_dtype) ): request.node.add_marker( pytest.mark.xfail( raises=pa.ArrowNotImplementedError, reason=f"pyarrow doesn't support parsing {pa_dtype}", ) ) elif pa.types.is_timestamp(pa_dtype) and pa_dtype.tz is not None: if is_platform_windows() and is_ci_environment(): request.node.add_marker( pytest.mark.xfail( raises=pa.ArrowInvalid, reason=( "TODO: Set ARROW_TIMEZONE_DATABASE environment variable " "on CI to path to the tzdata for pyarrow." ), ) ) pa_array = data._data.cast(pa.string()) result = type(data)._from_sequence_of_strings(pa_array, dtype=data.dtype) tm.assert_extension_array_equal(result, data) pa_array = pa_array.combine_chunks() result = type(data)._from_sequence_of_strings(pa_array, dtype=data.dtype) tm.assert_extension_array_equal(result, data) class TestGetitemTests(base.BaseGetitemTests): pass class TestBaseAccumulateTests(base.BaseAccumulateTests): def check_accumulate(self, ser, op_name, skipna): result = getattr(ser, op_name)(skipna=skipna) if ser.dtype.kind == "m": # Just check that we match the integer behavior. ser = ser.astype("int64[pyarrow]") result = result.astype("int64[pyarrow]") result = result.astype("Float64") expected = getattr(ser.astype("Float64"), op_name)(skipna=skipna) self.assert_series_equal(result, expected, check_dtype=False) @pytest.mark.parametrize("skipna", [True, False]) def test_accumulate_series_raises(self, data, all_numeric_accumulations, skipna): pa_type = data.dtype.pyarrow_dtype if ( ( pa.types.is_integer(pa_type) or pa.types.is_floating(pa_type) or pa.types.is_duration(pa_type) ) and all_numeric_accumulations == "cumsum" and not pa_version_under9p0 ): pytest.skip("These work, are tested by test_accumulate_series.") op_name = all_numeric_accumulations ser = pd.Series(data) with pytest.raises(NotImplementedError): getattr(ser, op_name)(skipna=skipna) @pytest.mark.parametrize("skipna", [True, False]) def test_accumulate_series(self, data, all_numeric_accumulations, skipna, request): pa_type = data.dtype.pyarrow_dtype op_name = all_numeric_accumulations ser = pd.Series(data) do_skip = False if pa.types.is_string(pa_type) or pa.types.is_binary(pa_type): if op_name in ["cumsum", "cumprod"]: do_skip = True elif pa.types.is_temporal(pa_type) and not pa.types.is_duration(pa_type): if op_name in ["cumsum", "cumprod"]: do_skip = True elif pa.types.is_duration(pa_type): if op_name == "cumprod": do_skip = True if do_skip: pytest.skip( "These should *not* work, we test in test_accumulate_series_raises " "that these correctly raise." ) if all_numeric_accumulations != "cumsum" or pa_version_under9p0: if request.config.option.skip_slow: # equivalent to marking these cases with @pytest.mark.slow, # these xfails take a long time to run because pytest # renders the exception messages even when not showing them pytest.skip("pyarrow xfail slow") request.node.add_marker( pytest.mark.xfail( reason=f"{all_numeric_accumulations} not implemented", raises=NotImplementedError, ) ) elif all_numeric_accumulations == "cumsum" and ( pa.types.is_boolean(pa_type) or pa.types.is_decimal(pa_type) ): request.node.add_marker( pytest.mark.xfail( reason=f"{all_numeric_accumulations} not implemented for {pa_type}", raises=NotImplementedError, ) ) self.check_accumulate(ser, op_name, skipna) class TestBaseNumericReduce(base.BaseNumericReduceTests): def check_reduce(self, ser, op_name, skipna): pa_dtype = ser.dtype.pyarrow_dtype if op_name == "count": result = getattr(ser, op_name)() else: result = getattr(ser, op_name)(skipna=skipna) if pa.types.is_boolean(pa_dtype): # Can't convert if ser contains NA pytest.skip( "pandas boolean data with NA does not fully support all reductions" ) elif pa.types.is_integer(pa_dtype) or pa.types.is_floating(pa_dtype): ser = ser.astype("Float64") if op_name == "count": expected = getattr(ser, op_name)() else: expected = getattr(ser, op_name)(skipna=skipna) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("skipna", [True, False]) def test_reduce_series(self, data, all_numeric_reductions, skipna, request): pa_dtype = data.dtype.pyarrow_dtype opname = all_numeric_reductions ser = pd.Series(data) should_work = True if pa.types.is_temporal(pa_dtype) and opname in [ "sum", "var", "skew", "kurt", "prod", ]: if pa.types.is_duration(pa_dtype) and opname in ["sum"]: # summing timedeltas is one case that *is* well-defined pass else: should_work = False elif ( pa.types.is_string(pa_dtype) or pa.types.is_binary(pa_dtype) ) and opname in [ "sum", "mean", "median", "prod", "std", "sem", "var", "skew", "kurt", ]: should_work = False if not should_work: # matching the non-pyarrow versions, these operations *should* not # work for these dtypes msg = f"does not support reduction '{opname}'" with pytest.raises(TypeError, match=msg): getattr(ser, opname)(skipna=skipna) return xfail_mark = pytest.mark.xfail( raises=TypeError, reason=( f"{all_numeric_reductions} is not implemented in " f"pyarrow={pa.__version__} for {pa_dtype}" ), ) if all_numeric_reductions in {"skew", "kurt"}: request.node.add_marker(xfail_mark) elif ( all_numeric_reductions in {"var", "std", "median"} and pa_version_under7p0 and pa.types.is_decimal(pa_dtype) ): request.node.add_marker(xfail_mark) elif all_numeric_reductions == "sem" and pa_version_under8p0: request.node.add_marker(xfail_mark) elif pa.types.is_boolean(pa_dtype) and all_numeric_reductions in { "sem", "std", "var", "median", }: request.node.add_marker(xfail_mark) super().test_reduce_series(data, all_numeric_reductions, skipna) @pytest.mark.parametrize("typ", ["int64", "uint64", "float64"]) def test_median_not_approximate(self, typ): # GH 52679 result = pd.Series([1, 2], dtype=f"{typ}[pyarrow]").median() assert result == 1.5 class TestBaseBooleanReduce(base.BaseBooleanReduceTests): @pytest.mark.parametrize("skipna", [True, False]) def test_reduce_series( self, data, all_boolean_reductions, skipna, na_value, request ): pa_dtype = data.dtype.pyarrow_dtype xfail_mark = pytest.mark.xfail( raises=TypeError, reason=( f"{all_boolean_reductions} is not implemented in " f"pyarrow={pa.__version__} for {pa_dtype}" ), ) if pa.types.is_string(pa_dtype) or pa.types.is_binary(pa_dtype): # We *might* want to make this behave like the non-pyarrow cases, # but have not yet decided. request.node.add_marker(xfail_mark) op_name = all_boolean_reductions ser = pd.Series(data) if pa.types.is_temporal(pa_dtype) and not pa.types.is_duration(pa_dtype): # xref GH#34479 we support this in our non-pyarrow datetime64 dtypes, # but it isn't obvious we _should_. For now, we keep the pyarrow # behavior which does not support this. with pytest.raises(TypeError, match="does not support reduction"): getattr(ser, op_name)(skipna=skipna) return result = getattr(ser, op_name)(skipna=skipna) assert result is (op_name == "any") class TestBaseGroupby(base.BaseGroupbyTests): def test_groupby_extension_no_sort(self, data_for_grouping, request): pa_dtype = data_for_grouping.dtype.pyarrow_dtype if pa.types.is_boolean(pa_dtype): request.node.add_marker( pytest.mark.xfail( reason=f"{pa_dtype} only has 2 unique possible values", ) ) super().test_groupby_extension_no_sort(data_for_grouping) def test_groupby_extension_transform(self, data_for_grouping, request): pa_dtype = data_for_grouping.dtype.pyarrow_dtype if pa.types.is_boolean(pa_dtype): request.node.add_marker( pytest.mark.xfail( reason=f"{pa_dtype} only has 2 unique possible values", ) ) super().test_groupby_extension_transform(data_for_grouping) @pytest.mark.parametrize("as_index", [True, False]) def test_groupby_extension_agg(self, as_index, data_for_grouping, request): pa_dtype = data_for_grouping.dtype.pyarrow_dtype if pa.types.is_boolean(pa_dtype): request.node.add_marker( pytest.mark.xfail( raises=ValueError, reason=f"{pa_dtype} only has 2 unique possible values", ) ) super().test_groupby_extension_agg(as_index, data_for_grouping) def test_in_numeric_groupby(self, data_for_grouping): if is_string_dtype(data_for_grouping.dtype): df = pd.DataFrame( { "A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping, "C": [1, 1, 1, 1, 1, 1, 1, 1], } ) expected = pd.Index(["C"]) with pytest.raises(TypeError, match="does not support"): df.groupby("A").sum().columns result = df.groupby("A").sum(numeric_only=True).columns tm.assert_index_equal(result, expected) else: super().test_in_numeric_groupby(data_for_grouping) class TestBaseDtype(base.BaseDtypeTests): def test_check_dtype(self, data, request): pa_dtype = data.dtype.pyarrow_dtype if pa.types.is_decimal(pa_dtype) and pa_version_under8p0: request.node.add_marker( pytest.mark.xfail( raises=ValueError, reason="decimal string repr affects numpy comparison", ) ) super().test_check_dtype(data) def test_construct_from_string_own_name(self, dtype, request): pa_dtype = dtype.pyarrow_dtype if pa.types.is_decimal(pa_dtype): request.node.add_marker( pytest.mark.xfail( raises=NotImplementedError, reason=f"pyarrow.type_for_alias cannot infer {pa_dtype}", ) ) if pa.types.is_string(pa_dtype): # We still support StringDtype('pyarrow') over ArrowDtype(pa.string()) msg = r"string\[pyarrow\] should be constructed by StringDtype" with pytest.raises(TypeError, match=msg): dtype.construct_from_string(dtype.name) return super().test_construct_from_string_own_name(dtype) def test_is_dtype_from_name(self, dtype, request): pa_dtype = dtype.pyarrow_dtype if pa.types.is_string(pa_dtype): # We still support StringDtype('pyarrow') over ArrowDtype(pa.string()) assert not type(dtype).is_dtype(dtype.name) else: if pa.types.is_decimal(pa_dtype): request.node.add_marker( pytest.mark.xfail( raises=NotImplementedError, reason=f"pyarrow.type_for_alias cannot infer {pa_dtype}", ) ) super().test_is_dtype_from_name(dtype) def test_construct_from_string_another_type_raises(self, dtype): msg = r"'another_type' must end with '\[pyarrow\]'" with pytest.raises(TypeError, match=msg): type(dtype).construct_from_string("another_type") def test_get_common_dtype(self, dtype, request): pa_dtype = dtype.pyarrow_dtype if ( pa.types.is_date(pa_dtype) or pa.types.is_time(pa_dtype) or ( pa.types.is_timestamp(pa_dtype) and (pa_dtype.unit != "ns" or pa_dtype.tz is not None) ) or (pa.types.is_duration(pa_dtype) and pa_dtype.unit != "ns") or pa.types.is_binary(pa_dtype) or pa.types.is_decimal(pa_dtype) ): request.node.add_marker( pytest.mark.xfail( reason=( f"{pa_dtype} does not have associated numpy " f"dtype findable by find_common_type" ) ) ) super().test_get_common_dtype(dtype) def test_is_not_string_type(self, dtype): pa_dtype = dtype.pyarrow_dtype if pa.types.is_string(pa_dtype): assert is_string_dtype(dtype) else: super().test_is_not_string_type(dtype) class TestBaseIndex(base.BaseIndexTests): pass class TestBaseInterface(base.BaseInterfaceTests): @pytest.mark.xfail( reason="GH 45419: pyarrow.ChunkedArray does not support views.", run=False ) def test_view(self, data): super().test_view(data) class TestBaseMissing(base.BaseMissingTests): def test_fillna_no_op_returns_copy(self, data): data = data[~data.isna()] valid = data[0] result = data.fillna(valid) assert result is not data self.assert_extension_array_equal(result, data) with tm.assert_produces_warning(PerformanceWarning): result = data.fillna(method="backfill") assert result is not data self.assert_extension_array_equal(result, data) def test_fillna_series_method(self, data_missing, fillna_method): with tm.maybe_produces_warning( PerformanceWarning, fillna_method is not None, check_stacklevel=False ): super().test_fillna_series_method(data_missing, fillna_method) class TestBasePrinting(base.BasePrintingTests): pass class TestBaseReshaping(base.BaseReshapingTests): @pytest.mark.xfail( reason="GH 45419: pyarrow.ChunkedArray does not support views", run=False ) def test_transpose(self, data): super().test_transpose(data) class TestBaseSetitem(base.BaseSetitemTests): @pytest.mark.xfail( reason="GH 45419: pyarrow.ChunkedArray does not support views", run=False ) def test_setitem_preserves_views(self, data): super().test_setitem_preserves_views(data) class TestBaseParsing(base.BaseParsingTests): @pytest.mark.parametrize("engine", ["c", "python"]) def test_EA_types(self, engine, data, request): pa_dtype = data.dtype.pyarrow_dtype if pa.types.is_boolean(pa_dtype): request.node.add_marker( pytest.mark.xfail(raises=TypeError, reason="GH 47534") ) elif pa.types.is_decimal(pa_dtype): request.node.add_marker( pytest.mark.xfail( raises=NotImplementedError, reason=f"Parameterized types {pa_dtype} not supported.", ) ) elif pa.types.is_timestamp(pa_dtype) and pa_dtype.unit in ("us", "ns"): request.node.add_marker( pytest.mark.xfail( raises=ValueError, reason="https://github.com/pandas-dev/pandas/issues/49767", ) ) elif pa.types.is_binary(pa_dtype): request.node.add_marker( pytest.mark.xfail(reason="CSV parsers don't correctly handle binary") ) df = pd.DataFrame({"with_dtype": pd.Series(data, dtype=str(data.dtype))}) csv_output = df.to_csv(index=False, na_rep=np.nan) if pa.types.is_binary(pa_dtype): csv_output = BytesIO(csv_output) else: csv_output = StringIO(csv_output) result = pd.read_csv( csv_output, dtype={"with_dtype": str(data.dtype)}, engine=engine ) expected = df self.assert_frame_equal(result, expected) class TestBaseUnaryOps(base.BaseUnaryOpsTests): def test_invert(self, data, request): pa_dtype = data.dtype.pyarrow_dtype if not pa.types.is_boolean(pa_dtype): request.node.add_marker( pytest.mark.xfail( raises=pa.ArrowNotImplementedError, reason=f"pyarrow.compute.invert does support {pa_dtype}", ) ) super().test_invert(data) class TestBaseMethods(base.BaseMethodsTests): @pytest.mark.parametrize("periods", [1, -2]) def test_diff(self, data, periods, request): pa_dtype = data.dtype.pyarrow_dtype if pa.types.is_unsigned_integer(pa_dtype) and periods == 1: request.node.add_marker( pytest.mark.xfail( raises=pa.ArrowInvalid, reason=( f"diff with {pa_dtype} and periods={periods} will overflow" ), ) ) super().test_diff(data, periods) def test_value_counts_returns_pyarrow_int64(self, data): # GH 51462 data = data[:10] result = data.value_counts() assert result.dtype == ArrowDtype(pa.int64()) def test_value_counts_with_normalize(self, data, request): data = data[:10].unique() values = np.array(data[~data.isna()]) ser = pd.Series(data, dtype=data.dtype) result = ser.value_counts(normalize=True).sort_index() expected = pd.Series( [1 / len(values)] * len(values), index=result.index, name="proportion" ) expected = expected.astype("double[pyarrow]") self.assert_series_equal(result, expected) def test_argmin_argmax( self, data_for_sorting, data_missing_for_sorting, na_value, request ): pa_dtype = data_for_sorting.dtype.pyarrow_dtype if pa.types.is_boolean(pa_dtype): request.node.add_marker( pytest.mark.xfail( reason=f"{pa_dtype} only has 2 unique possible values", ) ) elif pa.types.is_decimal(pa_dtype) and pa_version_under7p0: request.node.add_marker( pytest.mark.xfail( reason=f"No pyarrow kernel for {pa_dtype}", raises=pa.ArrowNotImplementedError, ) ) super().test_argmin_argmax(data_for_sorting, data_missing_for_sorting, na_value) @pytest.mark.parametrize( "op_name, skipna, expected", [ ("idxmax", True, 0), ("idxmin", True, 2), ("argmax", True, 0), ("argmin", True, 2), ("idxmax", False, np.nan), ("idxmin", False, np.nan), ("argmax", False, -1), ("argmin", False, -1), ], ) def test_argreduce_series( self, data_missing_for_sorting, op_name, skipna, expected, request ): pa_dtype = data_missing_for_sorting.dtype.pyarrow_dtype if pa.types.is_decimal(pa_dtype) and pa_version_under7p0 and skipna: request.node.add_marker( pytest.mark.xfail( reason=f"No pyarrow kernel for {pa_dtype}", raises=pa.ArrowNotImplementedError, ) ) super().test_argreduce_series( data_missing_for_sorting, op_name, skipna, expected ) def test_factorize(self, data_for_grouping, request): pa_dtype = data_for_grouping.dtype.pyarrow_dtype if pa.types.is_boolean(pa_dtype): request.node.add_marker( pytest.mark.xfail( reason=f"{pa_dtype} only has 2 unique possible values", ) ) super().test_factorize(data_for_grouping) _combine_le_expected_dtype = "bool[pyarrow]" def test_combine_add(self, data_repeated, request): pa_dtype = next(data_repeated(1)).dtype.pyarrow_dtype if pa.types.is_duration(pa_dtype): # TODO: this fails on the scalar addition constructing 'expected' # but not in the actual 'combine' call, so may be salvage-able mark = pytest.mark.xfail( raises=TypeError, reason=f"{pa_dtype} cannot be added to {pa_dtype}", ) request.node.add_marker(mark) super().test_combine_add(data_repeated) elif pa.types.is_temporal(pa_dtype): # analogous to datetime64, these cannot be added orig_data1, orig_data2 = data_repeated(2) s1 = pd.Series(orig_data1) s2 = pd.Series(orig_data2) with pytest.raises(TypeError): s1.combine(s2, lambda x1, x2: x1 + x2) else: super().test_combine_add(data_repeated) def test_searchsorted(self, data_for_sorting, as_series, request): pa_dtype = data_for_sorting.dtype.pyarrow_dtype if pa.types.is_boolean(pa_dtype): request.node.add_marker( pytest.mark.xfail( reason=f"{pa_dtype} only has 2 unique possible values", ) ) super().test_searchsorted(data_for_sorting, as_series) def test_basic_equals(self, data): # https://github.com/pandas-dev/pandas/issues/34660 assert pd.Series(data).equals(pd.Series(data)) class TestBaseArithmeticOps(base.BaseArithmeticOpsTests): divmod_exc = NotImplementedError @classmethod def assert_equal(cls, left, right, **kwargs): if isinstance(left, pd.DataFrame): left_pa_type = left.iloc[:, 0].dtype.pyarrow_dtype right_pa_type = right.iloc[:, 0].dtype.pyarrow_dtype else: left_pa_type = left.dtype.pyarrow_dtype right_pa_type = right.dtype.pyarrow_dtype if pa.types.is_decimal(left_pa_type) or pa.types.is_decimal(right_pa_type): # decimal precision can resize in the result type depending on data # just compare the float values left = left.astype("float[pyarrow]") right = right.astype("float[pyarrow]") tm.assert_equal(left, right, **kwargs) def get_op_from_name(self, op_name): short_opname = op_name.strip("_") if short_opname == "rtruediv": # use the numpy version that won't raise on division by zero return lambda x, y: np.divide(y, x) elif short_opname == "rfloordiv": return lambda x, y: np.floor_divide(y, x) return tm.get_op_from_name(op_name) def _patch_combine(self, obj, other, op): # BaseOpsUtil._combine can upcast expected dtype # (because it generates expected on python scalars) # while ArrowExtensionArray maintains original type expected = base.BaseArithmeticOpsTests._combine(self, obj, other, op) was_frame = False if isinstance(expected, pd.DataFrame): was_frame = True expected_data = expected.iloc[:, 0] original_dtype = obj.iloc[:, 0].dtype else: expected_data = expected original_dtype = obj.dtype pa_expected = pa.array(expected_data._values) if pa.types.is_duration(pa_expected.type): # pyarrow sees sequence of datetime/timedelta objects and defaults # to "us" but the non-pointwise op retains unit unit = original_dtype.pyarrow_dtype.unit if type(other) in [datetime, timedelta] and unit in ["s", "ms"]: # pydatetime/pytimedelta objects have microsecond reso, so we # take the higher reso of the original and microsecond. Note # this matches what we would do with DatetimeArray/TimedeltaArray unit = "us" pa_expected = pa_expected.cast(f"duration[{unit}]") else: pa_expected = pa_expected.cast(original_dtype.pyarrow_dtype) pd_expected = type(expected_data._values)(pa_expected) if was_frame: expected = pd.DataFrame( pd_expected, index=expected.index, columns=expected.columns ) else: expected = pd.Series(pd_expected) return expected def _is_temporal_supported(self, opname, pa_dtype): return not pa_version_under8p0 and ( opname in ("__add__", "__radd__") and pa.types.is_duration(pa_dtype) or opname in ("__sub__", "__rsub__") and pa.types.is_temporal(pa_dtype) ) def _get_scalar_exception(self, opname, pa_dtype): arrow_temporal_supported = self._is_temporal_supported(opname, pa_dtype) if opname in { "__mod__", "__rmod__", }: exc = NotImplementedError elif arrow_temporal_supported: exc = None elif opname in ["__add__", "__radd__"] and ( pa.types.is_string(pa_dtype) or pa.types.is_binary(pa_dtype) ): exc = None elif not ( pa.types.is_floating(pa_dtype) or pa.types.is_integer(pa_dtype) or pa.types.is_decimal(pa_dtype) ): exc = pa.ArrowNotImplementedError else: exc = None return exc def _get_arith_xfail_marker(self, opname, pa_dtype): mark = None arrow_temporal_supported = self._is_temporal_supported(opname, pa_dtype) if ( opname == "__rpow__" and ( pa.types.is_floating(pa_dtype) or pa.types.is_integer(pa_dtype) or pa.types.is_decimal(pa_dtype) ) and not pa_version_under7p0 ): mark = pytest.mark.xfail( reason=( f"GH#29997: 1**pandas.NA == 1 while 1**pyarrow.NA == NULL " f"for {pa_dtype}" ) ) elif arrow_temporal_supported: mark = pytest.mark.xfail( raises=TypeError, reason=( f"{opname} not supported between" f"pd.NA and {pa_dtype} Python scalar" ), ) elif ( opname == "__rfloordiv__" and (pa.types.is_integer(pa_dtype) or pa.types.is_decimal(pa_dtype)) and not pa_version_under7p0 ): mark = pytest.mark.xfail( raises=pa.ArrowInvalid, reason="divide by 0", ) elif ( opname == "__rtruediv__" and pa.types.is_decimal(pa_dtype) and not pa_version_under7p0 ): mark = pytest.mark.xfail( raises=pa.ArrowInvalid, reason="divide by 0", ) elif ( opname == "__pow__" and pa.types.is_decimal(pa_dtype) and pa_version_under7p0 ): mark = pytest.mark.xfail( raises=pa.ArrowInvalid, reason="Invalid decimal function: power_checked", ) return mark def test_arith_series_with_scalar( self, data, all_arithmetic_operators, request, monkeypatch ): pa_dtype = data.dtype.pyarrow_dtype if all_arithmetic_operators == "__rmod__" and ( pa.types.is_string(pa_dtype) or pa.types.is_binary(pa_dtype) ): pytest.skip("Skip testing Python string formatting") self.series_scalar_exc = self._get_scalar_exception( all_arithmetic_operators, pa_dtype ) mark = self._get_arith_xfail_marker(all_arithmetic_operators, pa_dtype) if mark is not None: request.node.add_marker(mark) if ( ( all_arithmetic_operators == "__floordiv__" and pa.types.is_integer(pa_dtype) ) or pa.types.is_duration(pa_dtype) or pa.types.is_timestamp(pa_dtype) ): # BaseOpsUtil._combine always returns int64, while ArrowExtensionArray does # not upcast monkeypatch.setattr(TestBaseArithmeticOps, "_combine", self._patch_combine) super().test_arith_series_with_scalar(data, all_arithmetic_operators) def test_arith_frame_with_scalar( self, data, all_arithmetic_operators, request, monkeypatch ): pa_dtype = data.dtype.pyarrow_dtype if all_arithmetic_operators == "__rmod__" and ( pa.types.is_string(pa_dtype) or pa.types.is_binary(pa_dtype) ): pytest.skip("Skip testing Python string formatting") self.frame_scalar_exc = self._get_scalar_exception( all_arithmetic_operators, pa_dtype ) mark = self._get_arith_xfail_marker(all_arithmetic_operators, pa_dtype) if mark is not None: request.node.add_marker(mark) if ( ( all_arithmetic_operators == "__floordiv__" and pa.types.is_integer(pa_dtype) ) or pa.types.is_duration(pa_dtype) or pa.types.is_timestamp(pa_dtype) ): # BaseOpsUtil._combine always returns int64, while ArrowExtensionArray does # not upcast monkeypatch.setattr(TestBaseArithmeticOps, "_combine", self._patch_combine) super().test_arith_frame_with_scalar(data, all_arithmetic_operators) def test_arith_series_with_array( self, data, all_arithmetic_operators, request, monkeypatch ): pa_dtype = data.dtype.pyarrow_dtype self.series_array_exc = self._get_scalar_exception( all_arithmetic_operators, pa_dtype ) if ( all_arithmetic_operators in ( "__sub__", "__rsub__", ) and pa.types.is_unsigned_integer(pa_dtype) and not pa_version_under7p0 ): request.node.add_marker( pytest.mark.xfail( raises=pa.ArrowInvalid, reason=( f"Implemented pyarrow.compute.subtract_checked " f"which raises on overflow for {pa_dtype}" ), ) ) mark = self._get_arith_xfail_marker(all_arithmetic_operators, pa_dtype) if mark is not None: request.node.add_marker(mark) op_name = all_arithmetic_operators ser = pd.Series(data) # pd.Series([ser.iloc[0]] * len(ser)) may not return ArrowExtensionArray # since ser.iloc[0] is a python scalar other = pd.Series(pd.array([ser.iloc[0]] * len(ser), dtype=data.dtype)) if ( pa.types.is_floating(pa_dtype) or ( pa.types.is_integer(pa_dtype) and all_arithmetic_operators not in ["__truediv__", "__rtruediv__"] ) or pa.types.is_duration(pa_dtype) or pa.types.is_timestamp(pa_dtype) ): monkeypatch.setattr(TestBaseArithmeticOps, "_combine", self._patch_combine) self.check_opname(ser, op_name, other, exc=self.series_array_exc) def test_add_series_with_extension_array(self, data, request): pa_dtype = data.dtype.pyarrow_dtype if pa.types.is_temporal(pa_dtype) and not pa.types.is_duration(pa_dtype): # i.e. timestamp, date, time, but not timedelta; these *should* # raise when trying to add ser = pd.Series(data) if pa_version_under7p0: msg = "Function add_checked has no kernel matching input types" else: msg = "Function 'add_checked' has no kernel matching input types" with pytest.raises(NotImplementedError, match=msg): # TODO: this is a pa.lib.ArrowNotImplementedError, might # be better to reraise a TypeError; more consistent with # non-pyarrow cases ser + data return if (pa_version_under8p0 and pa.types.is_duration(pa_dtype)) or ( pa.types.is_boolean(pa_dtype) ): request.node.add_marker( pytest.mark.xfail( raises=NotImplementedError, reason=f"add_checked not implemented for {pa_dtype}", ) ) elif pa_dtype.equals("int8"): request.node.add_marker( pytest.mark.xfail( raises=pa.ArrowInvalid, reason=f"raises on overflow for {pa_dtype}", ) ) super().test_add_series_with_extension_array(data) class TestBaseComparisonOps(base.BaseComparisonOpsTests): def test_compare_array(self, data, comparison_op, na_value): ser = pd.Series(data) # pd.Series([ser.iloc[0]] * len(ser)) may not return ArrowExtensionArray # since ser.iloc[0] is a python scalar other = pd.Series(pd.array([ser.iloc[0]] * len(ser), dtype=data.dtype)) if comparison_op.__name__ in ["eq", "ne"]: # comparison should match point-wise comparisons result = comparison_op(ser, other) # Series.combine does not calculate the NA mask correctly # when comparing over an array assert result[8] is na_value assert result[97] is na_value expected = ser.combine(other, comparison_op) expected[8] = na_value expected[97] = na_value self.assert_series_equal(result, expected) else: exc = None try: result = comparison_op(ser, other) except Exception as err: exc = err if exc is None: # Didn't error, then should match point-wise behavior expected = ser.combine(other, comparison_op) self.assert_series_equal(result, expected) else: with pytest.raises(type(exc)): ser.combine(other, comparison_op) def test_invalid_other_comp(self, data, comparison_op): # GH 48833 with pytest.raises( NotImplementedError, match=".* not implemented for " ): comparison_op(data, object()) @pytest.mark.parametrize("masked_dtype", ["boolean", "Int64", "Float64"]) def test_comp_masked_numpy(self, masked_dtype, comparison_op): # GH 52625 data = [1, 0, None] ser_masked = pd.Series(data, dtype=masked_dtype) ser_pa = pd.Series(data, dtype=f"{masked_dtype.lower()}[pyarrow]") result = comparison_op(ser_pa, ser_masked) if comparison_op in [operator.lt, operator.gt, operator.ne]: exp = [False, False, None] else: exp = [True, True, None] expected = pd.Series(exp, dtype=ArrowDtype(pa.bool_())) tm.assert_series_equal(result, expected) class TestLogicalOps: """Various Series and DataFrame logical ops methods.""" def test_kleene_or(self): a = pd.Series([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean[pyarrow]") b = pd.Series([True, False, None] * 3, dtype="boolean[pyarrow]") result = a | b expected = pd.Series( [True, True, True, True, False, None, True, None, None], dtype="boolean[pyarrow]", ) tm.assert_series_equal(result, expected) result = b | a tm.assert_series_equal(result, expected) # ensure we haven't mutated anything inplace tm.assert_series_equal( a, pd.Series([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean[pyarrow]"), ) tm.assert_series_equal( b, pd.Series([True, False, None] * 3, dtype="boolean[pyarrow]") ) @pytest.mark.parametrize( "other, expected", [ (None, [True, None, None]), (pd.NA, [True, None, None]), (True, [True, True, True]), (np.bool_(True), [True, True, True]), (False, [True, False, None]), (np.bool_(False), [True, False, None]), ], ) def test_kleene_or_scalar(self, other, expected): a = pd.Series([True, False, None], dtype="boolean[pyarrow]") result = a | other expected = pd.Series(expected, dtype="boolean[pyarrow]") tm.assert_series_equal(result, expected) result = other | a tm.assert_series_equal(result, expected) # ensure we haven't mutated anything inplace tm.assert_series_equal( a, pd.Series([True, False, None], dtype="boolean[pyarrow]") ) def test_kleene_and(self): a = pd.Series([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean[pyarrow]") b = pd.Series([True, False, None] * 3, dtype="boolean[pyarrow]") result = a & b expected = pd.Series( [True, False, None, False, False, False, None, False, None], dtype="boolean[pyarrow]", ) tm.assert_series_equal(result, expected) result = b & a tm.assert_series_equal(result, expected) # ensure we haven't mutated anything inplace tm.assert_series_equal( a, pd.Series([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean[pyarrow]"), ) tm.assert_series_equal( b, pd.Series([True, False, None] * 3, dtype="boolean[pyarrow]") ) @pytest.mark.parametrize( "other, expected", [ (None, [None, False, None]), (pd.NA, [None, False, None]), (True, [True, False, None]), (False, [False, False, False]), (np.bool_(True), [True, False, None]), (np.bool_(False), [False, False, False]), ], ) def test_kleene_and_scalar(self, other, expected): a = pd.Series([True, False, None], dtype="boolean[pyarrow]") result = a & other expected = pd.Series(expected, dtype="boolean[pyarrow]") tm.assert_series_equal(result, expected) result = other & a tm.assert_series_equal(result, expected) # ensure we haven't mutated anything inplace tm.assert_series_equal( a, pd.Series([True, False, None], dtype="boolean[pyarrow]") ) def test_kleene_xor(self): a = pd.Series([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean[pyarrow]") b = pd.Series([True, False, None] * 3, dtype="boolean[pyarrow]") result = a ^ b expected = pd.Series( [False, True, None, True, False, None, None, None, None], dtype="boolean[pyarrow]", ) tm.assert_series_equal(result, expected) result = b ^ a tm.assert_series_equal(result, expected) # ensure we haven't mutated anything inplace tm.assert_series_equal( a, pd.Series([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean[pyarrow]"), ) tm.assert_series_equal( b, pd.Series([True, False, None] * 3, dtype="boolean[pyarrow]") ) @pytest.mark.parametrize( "other, expected", [ (None, [None, None, None]), (pd.NA, [None, None, None]), (True, [False, True, None]), (np.bool_(True), [False, True, None]), (np.bool_(False), [True, False, None]), ], ) def test_kleene_xor_scalar(self, other, expected): a = pd.Series([True, False, None], dtype="boolean[pyarrow]") result = a ^ other expected = pd.Series(expected, dtype="boolean[pyarrow]") tm.assert_series_equal(result, expected) result = other ^ a tm.assert_series_equal(result, expected) # ensure we haven't mutated anything inplace tm.assert_series_equal( a, pd.Series([True, False, None], dtype="boolean[pyarrow]") ) @pytest.mark.parametrize( "op, exp", [ ["__and__", True], ["__or__", True], ["__xor__", False], ], ) def test_logical_masked_numpy(self, op, exp): # GH 52625 data = [True, False, None] ser_masked = pd.Series(data, dtype="boolean") ser_pa = pd.Series(data, dtype="boolean[pyarrow]") result = getattr(ser_pa, op)(ser_masked) expected = pd.Series([exp, False, None], dtype=ArrowDtype(pa.bool_())) tm.assert_series_equal(result, expected) def test_arrowdtype_construct_from_string_type_with_unsupported_parameters(): with pytest.raises(NotImplementedError, match="Passing pyarrow type"): ArrowDtype.construct_from_string("not_a_real_dype[s, tz=UTC][pyarrow]") # but as of GH#50689, timestamptz is supported dtype = ArrowDtype.construct_from_string("timestamp[s, tz=UTC][pyarrow]") expected = ArrowDtype(pa.timestamp("s", "UTC")) assert dtype == expected with pytest.raises(NotImplementedError, match="Passing pyarrow type"): ArrowDtype.construct_from_string("decimal(7, 2)[pyarrow]") def test_arrowdtype_construct_from_string_type_only_one_pyarrow(): # GH#51225 invalid = "int64[pyarrow]foobar[pyarrow]" msg = ( r"Passing pyarrow type specific parameters \(\[pyarrow\]\) in the " r"string is not supported\." ) with pytest.raises(NotImplementedError, match=msg): pd.Series(range(3), dtype=invalid) @pytest.mark.parametrize( "interpolation", ["linear", "lower", "higher", "nearest", "midpoint"] ) @pytest.mark.parametrize("quantile", [0.5, [0.5, 0.5]]) def test_quantile(data, interpolation, quantile, request): pa_dtype = data.dtype.pyarrow_dtype data = data.take([0, 0, 0]) ser = pd.Series(data) if ( pa.types.is_string(pa_dtype) or pa.types.is_binary(pa_dtype) or pa.types.is_boolean(pa_dtype) ): # For string, bytes, and bool, we don't *expect* to have quantile work # Note this matches the non-pyarrow behavior if pa_version_under7p0: msg = r"Function quantile has no kernel matching input types \(.*\)" else: msg = r"Function 'quantile' has no kernel matching input types \(.*\)" with pytest.raises(pa.ArrowNotImplementedError, match=msg): ser.quantile(q=quantile, interpolation=interpolation) return if ( pa.types.is_integer(pa_dtype) or pa.types.is_floating(pa_dtype) or (pa.types.is_decimal(pa_dtype) and not pa_version_under7p0) ): pass elif pa.types.is_temporal(data._data.type): pass else: request.node.add_marker( pytest.mark.xfail( raises=pa.ArrowNotImplementedError, reason=f"quantile not supported by pyarrow for {pa_dtype}", ) ) data = data.take([0, 0, 0]) ser = pd.Series(data) result = ser.quantile(q=quantile, interpolation=interpolation) if pa.types.is_timestamp(pa_dtype) and interpolation not in ["lower", "higher"]: # rounding error will make the check below fail # (e.g. '2020-01-01 01:01:01.000001' vs '2020-01-01 01:01:01.000001024'), # so we'll check for now that we match the numpy analogue if pa_dtype.tz: pd_dtype = f"M8[{pa_dtype.unit}, {pa_dtype.tz}]" else: pd_dtype = f"M8[{pa_dtype.unit}]" ser_np = ser.astype(pd_dtype) expected = ser_np.quantile(q=quantile, interpolation=interpolation) if quantile == 0.5: if pa_dtype.unit == "us": expected = expected.to_pydatetime(warn=False) assert result == expected else: if pa_dtype.unit == "us": expected = expected.dt.floor("us") tm.assert_series_equal(result, expected.astype(data.dtype)) return if quantile == 0.5: assert result == data[0] else: # Just check the values expected = pd.Series(data.take([0, 0]), index=[0.5, 0.5]) if ( pa.types.is_integer(pa_dtype) or pa.types.is_floating(pa_dtype) or pa.types.is_decimal(pa_dtype) ): expected = expected.astype("float64[pyarrow]") result = result.astype("float64[pyarrow]") tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "take_idx, exp_idx", [[[0, 0, 2, 2, 4, 4], [0, 4]], [[0, 0, 0, 2, 4, 4], [0]]], ids=["multi_mode", "single_mode"], ) def test_mode_dropna_true(data_for_grouping, take_idx, exp_idx): data = data_for_grouping.take(take_idx) ser = pd.Series(data) result = ser.mode(dropna=True) expected = pd.Series(data_for_grouping.take(exp_idx)) tm.assert_series_equal(result, expected) def test_mode_dropna_false_mode_na(data): # GH 50982 more_nans = pd.Series([None, None, data[0]], dtype=data.dtype) result = more_nans.mode(dropna=False) expected = pd.Series([None], dtype=data.dtype) tm.assert_series_equal(result, expected) expected = pd.Series([None, data[0]], dtype=data.dtype) result = expected.mode(dropna=False) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "arrow_dtype, expected_type", [ [pa.binary(), bytes], [pa.binary(16), bytes], [pa.large_binary(), bytes], [pa.large_string(), str], [pa.list_(pa.int64()), list], [pa.large_list(pa.int64()), list], [pa.map_(pa.string(), pa.int64()), list], [pa.struct([("f1", pa.int8()), ("f2", pa.string())]), dict], [pa.dictionary(pa.int64(), pa.int64()), CategoricalDtypeType], ], ) def test_arrow_dtype_type(arrow_dtype, expected_type): # GH 51845 # TODO: Redundant with test_getitem_scalar once arrow_dtype exists in data fixture assert ArrowDtype(arrow_dtype).type == expected_type def test_is_bool_dtype(): # GH 22667 data = ArrowExtensionArray(pa.array([True, False, True])) assert is_bool_dtype(data) assert pd.core.common.is_bool_indexer(data) s = pd.Series(range(len(data))) result = s[data] expected = s[np.asarray(data)] tm.assert_series_equal(result, expected) def test_is_numeric_dtype(data): # GH 50563 pa_type = data.dtype.pyarrow_dtype if ( pa.types.is_floating(pa_type) or pa.types.is_integer(pa_type) or pa.types.is_decimal(pa_type) ): assert is_numeric_dtype(data) else: assert not is_numeric_dtype(data) def test_is_integer_dtype(data): # GH 50667 pa_type = data.dtype.pyarrow_dtype if pa.types.is_integer(pa_type): assert is_integer_dtype(data) else: assert not is_integer_dtype(data) def test_is_any_integer_dtype(data): # GH 50667 pa_type = data.dtype.pyarrow_dtype if pa.types.is_integer(pa_type): assert is_any_int_dtype(data) else: assert not is_any_int_dtype(data) def test_is_signed_integer_dtype(data): pa_type = data.dtype.pyarrow_dtype if pa.types.is_signed_integer(pa_type): assert is_signed_integer_dtype(data) else: assert not is_signed_integer_dtype(data) def test_is_unsigned_integer_dtype(data): pa_type = data.dtype.pyarrow_dtype if pa.types.is_unsigned_integer(pa_type): assert is_unsigned_integer_dtype(data) else: assert not is_unsigned_integer_dtype(data) def test_is_float_dtype(data): pa_type = data.dtype.pyarrow_dtype if pa.types.is_floating(pa_type): assert is_float_dtype(data) else: assert not is_float_dtype(data) def test_pickle_roundtrip(data): # GH 42600 expected = pd.Series(data) expected_sliced = expected.head(2) full_pickled = pickle.dumps(expected) sliced_pickled = pickle.dumps(expected_sliced) assert len(full_pickled) > len(sliced_pickled) result = pickle.loads(full_pickled) tm.assert_series_equal(result, expected) result_sliced = pickle.loads(sliced_pickled) tm.assert_series_equal(result_sliced, expected_sliced) def test_astype_from_non_pyarrow(data): # GH49795 pd_array = data._data.to_pandas().array result = pd_array.astype(data.dtype) assert not isinstance(pd_array.dtype, ArrowDtype) assert isinstance(result.dtype, ArrowDtype) tm.assert_extension_array_equal(result, data) def test_astype_float_from_non_pyarrow_str(): # GH50430 ser = pd.Series(["1.0"]) result = ser.astype("float64[pyarrow]") expected = pd.Series([1.0], dtype="float64[pyarrow]") tm.assert_series_equal(result, expected) def test_to_numpy_with_defaults(data): # GH49973 result = data.to_numpy() pa_type = data._data.type if pa.types.is_duration(pa_type) or pa.types.is_timestamp(pa_type): expected = np.array(list(data)) else: expected = np.array(data._data) if data._hasna: expected = expected.astype(object) expected[pd.isna(data)] = pd.NA tm.assert_numpy_array_equal(result, expected) def test_to_numpy_int_with_na(): # GH51227: ensure to_numpy does not convert int to float data = [1, None] arr = pd.array(data, dtype="int64[pyarrow]") result = arr.to_numpy() expected = np.array([1, pd.NA], dtype=object) assert isinstance(result[0], int) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("na_val, exp", [(lib.no_default, np.nan), (1, 1)]) def test_to_numpy_null_array(na_val, exp): # GH#52443 arr = pd.array([pd.NA, pd.NA], dtype="null[pyarrow]") result = arr.to_numpy(dtype="float64", na_value=na_val) expected = np.array([exp] * 2, dtype="float64") tm.assert_numpy_array_equal(result, expected) def test_to_numpy_null_array_no_dtype(): # GH#52443 arr = pd.array([pd.NA, pd.NA], dtype="null[pyarrow]") result = arr.to_numpy(dtype=None) expected = np.array([pd.NA] * 2, dtype="object") tm.assert_numpy_array_equal(result, expected) def test_setitem_null_slice(data): # GH50248 orig = data.copy() result = orig.copy() result[:] = data[0] expected = ArrowExtensionArray( pa.array([data[0]] * len(data), type=data._data.type) ) tm.assert_extension_array_equal(result, expected) result = orig.copy() result[:] = data[::-1] expected = data[::-1] tm.assert_extension_array_equal(result, expected) result = orig.copy() result[:] = data.tolist() expected = data tm.assert_extension_array_equal(result, expected) def test_setitem_invalid_dtype(data): # GH50248 pa_type = data._data.type if pa.types.is_string(pa_type) or pa.types.is_binary(pa_type): fill_value = 123 err = TypeError msg = "Invalid value '123' for dtype" elif ( pa.types.is_integer(pa_type) or pa.types.is_floating(pa_type) or pa.types.is_boolean(pa_type) ): fill_value = "foo" err = pa.ArrowInvalid msg = "Could not convert" else: fill_value = "foo" err = TypeError msg = "Invalid value 'foo' for dtype" with pytest.raises(err, match=msg): data[:] = fill_value @pytest.mark.skipif(pa_version_under8p0, reason="returns object with 7.0") def test_from_arrow_respecting_given_dtype(): date_array = pa.array( [pd.Timestamp("2019-12-31"), pd.Timestamp("2019-12-31")], type=pa.date32() ) result = date_array.to_pandas( types_mapper={pa.date32(): ArrowDtype(pa.date64())}.get ) expected = pd.Series( [pd.Timestamp("2019-12-31"), pd.Timestamp("2019-12-31")], dtype=ArrowDtype(pa.date64()), ) tm.assert_series_equal(result, expected) @pytest.mark.skipif(pa_version_under8p0, reason="doesn't raise with 7") def test_from_arrow_respecting_given_dtype_unsafe(): array = pa.array([1.5, 2.5], type=pa.float64()) with pytest.raises(pa.ArrowInvalid, match="Float value 1.5 was truncated"): array.to_pandas(types_mapper={pa.float64(): ArrowDtype(pa.int64())}.get) def test_round(): dtype = "float64[pyarrow]" ser = pd.Series([0.0, 1.23, 2.56, pd.NA], dtype=dtype) result = ser.round(1) expected = pd.Series([0.0, 1.2, 2.6, pd.NA], dtype=dtype) tm.assert_series_equal(result, expected) ser = pd.Series([123.4, pd.NA, 56.78], dtype=dtype) result = ser.round(-1) expected = pd.Series([120.0, pd.NA, 60.0], dtype=dtype) tm.assert_series_equal(result, expected) def test_searchsorted_with_na_raises(data_for_sorting, as_series): # GH50447 b, c, a = data_for_sorting arr = data_for_sorting.take([2, 0, 1]) # to get [a, b, c] arr[-1] = pd.NA if as_series: arr = pd.Series(arr) msg = ( "searchsorted requires array to be sorted, " "which is impossible with NAs present." ) with pytest.raises(ValueError, match=msg): arr.searchsorted(b) def test_sort_values_dictionary(): df = pd.DataFrame( { "a": pd.Series( ["x", "y"], dtype=ArrowDtype(pa.dictionary(pa.int32(), pa.string())) ), "b": [1, 2], }, ) expected = df.copy() result = df.sort_values(by=["a", "b"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("pat", ["abc", "a[a-z]{2}"]) def test_str_count(pat): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) result = ser.str.count(pat) expected = pd.Series([1, None], dtype=ArrowDtype(pa.int32())) tm.assert_series_equal(result, expected) def test_str_count_flags_unsupported(): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) with pytest.raises(NotImplementedError, match="count not"): ser.str.count("abc", flags=1) @pytest.mark.parametrize( "side, str_func", [["left", "rjust"], ["right", "ljust"], ["both", "center"]] ) def test_str_pad(side, str_func): ser = pd.Series(["a", None], dtype=ArrowDtype(pa.string())) result = ser.str.pad(width=3, side=side, fillchar="x") expected = pd.Series( [getattr("a", str_func)(3, "x"), None], dtype=ArrowDtype(pa.string()) ) tm.assert_series_equal(result, expected) def test_str_pad_invalid_side(): ser = pd.Series(["a", None], dtype=ArrowDtype(pa.string())) with pytest.raises(ValueError, match="Invalid side: foo"): ser.str.pad(3, "foo", "x") @pytest.mark.parametrize( "pat, case, na, regex, exp", [ ["ab", False, None, False, [True, None]], ["Ab", True, None, False, [False, None]], ["ab", False, True, False, [True, True]], ["a[a-z]{1}", False, None, True, [True, None]], ["A[a-z]{1}", True, None, True, [False, None]], ], ) def test_str_contains(pat, case, na, regex, exp): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) result = ser.str.contains(pat, case=case, na=na, regex=regex) expected = pd.Series(exp, dtype=ArrowDtype(pa.bool_())) tm.assert_series_equal(result, expected) def test_str_contains_flags_unsupported(): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) with pytest.raises(NotImplementedError, match="contains not"): ser.str.contains("a", flags=1) @pytest.mark.parametrize( "side, pat, na, exp", [ ["startswith", "ab", None, [True, None]], ["startswith", "b", False, [False, False]], ["endswith", "b", True, [False, True]], ["endswith", "bc", None, [True, None]], ], ) def test_str_start_ends_with(side, pat, na, exp): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) result = getattr(ser.str, side)(pat, na=na) expected = pd.Series(exp, dtype=ArrowDtype(pa.bool_())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "arg_name, arg", [["pat", re.compile("b")], ["repl", str], ["case", False], ["flags", 1]], ) def test_str_replace_unsupported(arg_name, arg): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) kwargs = {"pat": "b", "repl": "x", "regex": True} kwargs[arg_name] = arg with pytest.raises(NotImplementedError, match="replace is not supported"): ser.str.replace(**kwargs) @pytest.mark.parametrize( "pat, repl, n, regex, exp", [ ["a", "x", -1, False, ["xbxc", None]], ["a", "x", 1, False, ["xbac", None]], ["[a-b]", "x", -1, True, ["xxxc", None]], ], ) def test_str_replace(pat, repl, n, regex, exp): ser = pd.Series(["abac", None], dtype=ArrowDtype(pa.string())) result = ser.str.replace(pat, repl, n=n, regex=regex) expected = pd.Series(exp, dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) def test_str_repeat_unsupported(): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) with pytest.raises(NotImplementedError, match="repeat is not"): ser.str.repeat([1, 2]) @pytest.mark.xfail( pa_version_under7p0, reason="Unsupported for pyarrow < 7", raises=NotImplementedError, ) def test_str_repeat(): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) result = ser.str.repeat(2) expected = pd.Series(["abcabc", None], dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "pat, case, na, exp", [ ["ab", False, None, [True, None]], ["Ab", True, None, [False, None]], ["bc", True, None, [False, None]], ["ab", False, True, [True, True]], ["a[a-z]{1}", False, None, [True, None]], ["A[a-z]{1}", True, None, [False, None]], ], ) def test_str_match(pat, case, na, exp): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) result = ser.str.match(pat, case=case, na=na) expected = pd.Series(exp, dtype=ArrowDtype(pa.bool_())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "pat, case, na, exp", [ ["abc", False, None, [True, None]], ["Abc", True, None, [False, None]], ["bc", True, None, [False, None]], ["ab", False, True, [True, True]], ["a[a-z]{2}", False, None, [True, None]], ["A[a-z]{1}", True, None, [False, None]], ], ) def test_str_fullmatch(pat, case, na, exp): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) result = ser.str.match(pat, case=case, na=na) expected = pd.Series(exp, dtype=ArrowDtype(pa.bool_())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "sub, start, end, exp, exp_typ", [["ab", 0, None, [0, None], pa.int32()], ["bc", 1, 3, [2, None], pa.int64()]], ) def test_str_find(sub, start, end, exp, exp_typ): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) result = ser.str.find(sub, start=start, end=end) expected = pd.Series(exp, dtype=ArrowDtype(exp_typ)) tm.assert_series_equal(result, expected) def test_str_find_notimplemented(): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) with pytest.raises(NotImplementedError, match="find not implemented"): ser.str.find("ab", start=1) @pytest.mark.parametrize( "i, exp", [ [1, ["b", "e", None]], [-1, ["c", "e", None]], [2, ["c", None, None]], [-3, ["a", None, None]], [4, [None, None, None]], ], ) def test_str_get(i, exp): ser = pd.Series(["abc", "de", None], dtype=ArrowDtype(pa.string())) result = ser.str.get(i) expected = pd.Series(exp, dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) @pytest.mark.xfail( reason="TODO: StringMethods._validate should support Arrow list types", raises=AttributeError, ) def test_str_join(): ser = pd.Series(ArrowExtensionArray(pa.array([list("abc"), list("123"), None]))) result = ser.str.join("=") expected = pd.Series(["a=b=c", "1=2=3", None], dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "start, stop, step, exp", [ [None, 2, None, ["ab", None]], [None, 2, 1, ["ab", None]], [1, 3, 1, ["bc", None]], ], ) def test_str_slice(start, stop, step, exp): ser = pd.Series(["abcd", None], dtype=ArrowDtype(pa.string())) result = ser.str.slice(start, stop, step) expected = pd.Series(exp, dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "start, stop, repl, exp", [ [1, 2, "x", ["axcd", None]], [None, 2, "x", ["xcd", None]], [None, 2, None, ["cd", None]], ], ) def test_str_slice_replace(start, stop, repl, exp): ser = pd.Series(["abcd", None], dtype=ArrowDtype(pa.string())) result = ser.str.slice_replace(start, stop, repl) expected = pd.Series(exp, dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "value, method, exp", [ ["a1c", "isalnum", True], ["!|,", "isalnum", False], ["aaa", "isalpha", True], ["!!!", "isalpha", False], ["٠", "isdecimal", True], ["~!", "isdecimal", False], ["2", "isdigit", True], ["~", "isdigit", False], ["aaa", "islower", True], ["aaA", "islower", False], ["123", "isnumeric", True], ["11I", "isnumeric", False], [" ", "isspace", True], ["", "isspace", False], ["The That", "istitle", True], ["the That", "istitle", False], ["AAA", "isupper", True], ["AAc", "isupper", False], ], ) def test_str_is_functions(value, method, exp): ser = pd.Series([value, None], dtype=ArrowDtype(pa.string())) result = getattr(ser.str, method)() expected = pd.Series([exp, None], dtype=ArrowDtype(pa.bool_())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "method, exp", [ ["capitalize", "Abc def"], ["title", "Abc Def"], ["swapcase", "AbC Def"], ["lower", "abc def"], ["upper", "ABC DEF"], ["casefold", "abc def"], ], ) def test_str_transform_functions(method, exp): ser = pd.Series(["aBc dEF", None], dtype=ArrowDtype(pa.string())) result = getattr(ser.str, method)() expected = pd.Series([exp, None], dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) def test_str_len(): ser = pd.Series(["abcd", None], dtype=ArrowDtype(pa.string())) result = ser.str.len() expected = pd.Series([4, None], dtype=ArrowDtype(pa.int32())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "method, to_strip, val", [ ["strip", None, " abc "], ["strip", "x", "xabcx"], ["lstrip", None, " abc"], ["lstrip", "x", "xabc"], ["rstrip", None, "abc "], ["rstrip", "x", "abcx"], ], ) def test_str_strip(method, to_strip, val): ser = pd.Series([val, None], dtype=ArrowDtype(pa.string())) result = getattr(ser.str, method)(to_strip=to_strip) expected = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("val", ["abc123", "abc"]) def test_str_removesuffix(val): ser = pd.Series([val, None], dtype=ArrowDtype(pa.string())) result = ser.str.removesuffix("123") expected = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("val", ["123abc", "abc"]) def test_str_removeprefix(val): ser = pd.Series([val, None], dtype=ArrowDtype(pa.string())) result = ser.str.removeprefix("123") expected = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("errors", ["ignore", "strict"]) @pytest.mark.parametrize( "encoding, exp", [ ["utf8", b"abc"], ["utf32", b"\xff\xfe\x00\x00a\x00\x00\x00b\x00\x00\x00c\x00\x00\x00"], ], ) def test_str_encode(errors, encoding, exp): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) result = ser.str.encode(encoding, errors) expected = pd.Series([exp, None], dtype=ArrowDtype(pa.binary())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("flags", [0, 1]) def test_str_findall(flags): ser = pd.Series(["abc", "efg", None], dtype=ArrowDtype(pa.string())) result = ser.str.findall("b", flags=flags) expected = pd.Series([["b"], [], None], dtype=ArrowDtype(pa.list_(pa.string()))) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("method", ["index", "rindex"]) @pytest.mark.parametrize( "start, end", [ [0, None], [1, 4], ], ) def test_str_r_index(method, start, end): ser = pd.Series(["abcba", None], dtype=ArrowDtype(pa.string())) result = getattr(ser.str, method)("c", start, end) expected = pd.Series([2, None], dtype=ArrowDtype(pa.int64())) tm.assert_series_equal(result, expected) with pytest.raises(ValueError, match="substring not found"): getattr(ser.str, method)("foo", start, end) @pytest.mark.parametrize("form", ["NFC", "NFKC"]) def test_str_normalize(form): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) result = ser.str.normalize(form) expected = ser.copy() tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "start, end", [ [0, None], [1, 4], ], ) def test_str_rfind(start, end): ser = pd.Series(["abcba", "foo", None], dtype=ArrowDtype(pa.string())) result = ser.str.rfind("c", start, end) expected = pd.Series([2, -1, None], dtype=ArrowDtype(pa.int64())) tm.assert_series_equal(result, expected) def test_str_translate(): ser = pd.Series(["abcba", None], dtype=ArrowDtype(pa.string())) result = ser.str.translate({97: "b"}) expected = pd.Series(["bbcbb", None], dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) def test_str_wrap(): ser = pd.Series(["abcba", None], dtype=ArrowDtype(pa.string())) result = ser.str.wrap(3) expected = pd.Series(["abc\nba", None], dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) def test_get_dummies(): ser = pd.Series(["a|b", None, "a|c"], dtype=ArrowDtype(pa.string())) result = ser.str.get_dummies() expected = pd.DataFrame( [[True, True, False], [False, False, False], [True, False, True]], dtype=ArrowDtype(pa.bool_()), columns=["a", "b", "c"], ) tm.assert_frame_equal(result, expected) def test_str_partition(): ser = pd.Series(["abcba", None], dtype=ArrowDtype(pa.string())) result = ser.str.partition("b") expected = pd.DataFrame( [["a", "b", "cba"], [None, None, None]], dtype=ArrowDtype(pa.string()) ) tm.assert_frame_equal(result, expected) result = ser.str.partition("b", expand=False) expected = pd.Series(ArrowExtensionArray(pa.array([["a", "b", "cba"], None]))) tm.assert_series_equal(result, expected) result = ser.str.rpartition("b") expected = pd.DataFrame( [["abc", "b", "a"], [None, None, None]], dtype=ArrowDtype(pa.string()) ) tm.assert_frame_equal(result, expected) result = ser.str.rpartition("b", expand=False) expected = pd.Series(ArrowExtensionArray(pa.array([["abc", "b", "a"], None]))) tm.assert_series_equal(result, expected) def test_str_split(): # GH 52401 ser = pd.Series(["a1cbcb", "a2cbcb", None], dtype=ArrowDtype(pa.string())) result = ser.str.split("c") expected = pd.Series( ArrowExtensionArray(pa.array([["a1", "b", "b"], ["a2", "b", "b"], None])) ) tm.assert_series_equal(result, expected) result = ser.str.split("c", n=1) expected = pd.Series( ArrowExtensionArray(pa.array([["a1", "bcb"], ["a2", "bcb"], None])) ) tm.assert_series_equal(result, expected) result = ser.str.split("[1-2]", regex=True) expected = pd.Series( ArrowExtensionArray(pa.array([["a", "cbcb"], ["a", "cbcb"], None])) ) tm.assert_series_equal(result, expected) result = ser.str.split("[1-2]", regex=True, expand=True) expected = pd.DataFrame( { 0: ArrowExtensionArray(pa.array(["a", "a", None])), 1: ArrowExtensionArray(pa.array(["cbcb", "cbcb", None])), } ) tm.assert_frame_equal(result, expected) def test_str_rsplit(): # GH 52401 ser = pd.Series(["a1cbcb", "a2cbcb", None], dtype=ArrowDtype(pa.string())) result = ser.str.rsplit("c") expected = pd.Series( ArrowExtensionArray(pa.array([["a1", "b", "b"], ["a2", "b", "b"], None])) ) tm.assert_series_equal(result, expected) result = ser.str.rsplit("c", n=1) expected = pd.Series( ArrowExtensionArray(pa.array([["a1cb", "b"], ["a2cb", "b"], None])) ) tm.assert_series_equal(result, expected) result = ser.str.rsplit("c", n=1, expand=True) expected = pd.DataFrame( { 0: ArrowExtensionArray(pa.array(["a1cb", "a2cb", None])), 1: ArrowExtensionArray(pa.array(["b", "b", None])), } ) tm.assert_frame_equal(result, expected) def test_str_unsupported_extract(): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) with pytest.raises( NotImplementedError, match="str.extract not supported with pd.ArrowDtype" ): ser.str.extract(r"[ab](\d)") @pytest.mark.parametrize("unit", ["ns", "us", "ms", "s"]) def test_duration_from_strings_with_nat(unit): # GH51175 strings = ["1000", "NaT"] pa_type = pa.duration(unit) result = ArrowExtensionArray._from_sequence_of_strings(strings, dtype=pa_type) expected = ArrowExtensionArray(pa.array([1000, None], type=pa_type)) tm.assert_extension_array_equal(result, expected) def test_unsupported_dt(data): pa_dtype = data.dtype.pyarrow_dtype if not pa.types.is_temporal(pa_dtype): with pytest.raises( AttributeError, match="Can only use .dt accessor with datetimelike values" ): pd.Series(data).dt @pytest.mark.parametrize( "prop, expected", [ ["year", 2023], ["day", 2], ["day_of_week", 0], ["dayofweek", 0], ["weekday", 0], ["day_of_year", 2], ["dayofyear", 2], ["hour", 3], ["minute", 4], pytest.param( "is_leap_year", False, marks=pytest.mark.xfail( pa_version_under8p0, raises=NotImplementedError, reason="is_leap_year not implemented for pyarrow < 8.0", ), ), ["microsecond", 5], ["month", 1], ["nanosecond", 6], ["quarter", 1], ["second", 7], ["date", date(2023, 1, 2)], ["time", time(3, 4, 7, 5)], ], ) def test_dt_properties(prop, expected): ser = pd.Series( [ pd.Timestamp( year=2023, month=1, day=2, hour=3, minute=4, second=7, microsecond=5, nanosecond=6, ), None, ], dtype=ArrowDtype(pa.timestamp("ns")), ) result = getattr(ser.dt, prop) exp_type = None if isinstance(expected, date): exp_type = pa.date32() elif isinstance(expected, time): exp_type = pa.time64("ns") expected = pd.Series(ArrowExtensionArray(pa.array([expected, None], type=exp_type))) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("unit", ["us", "ns"]) def test_dt_time_preserve_unit(unit): ser = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp(unit)), ) result = ser.dt.time expected = pd.Series( ArrowExtensionArray(pa.array([time(3, 0), None], type=pa.time64(unit))) ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("tz", [None, "UTC", "US/Pacific"]) def test_dt_tz(tz): ser = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp("ns", tz=tz)), ) result = ser.dt.tz assert result == tz def test_dt_isocalendar(): ser = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp("ns")), ) result = ser.dt.isocalendar() expected = pd.DataFrame( [[2023, 1, 1], [0, 0, 0]], columns=["year", "week", "day"], dtype="int64[pyarrow]", ) tm.assert_frame_equal(result, expected) def test_dt_strftime(request): if is_platform_windows() and is_ci_environment(): request.node.add_marker( pytest.mark.xfail( raises=pa.ArrowInvalid, reason=( "TODO: Set ARROW_TIMEZONE_DATABASE environment variable " "on CI to path to the tzdata for pyarrow." ), ) ) ser = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp("ns")), ) result = ser.dt.strftime("%Y-%m-%dT%H:%M:%S") expected = pd.Series( ["2023-01-02T03:00:00.000000000", None], dtype=ArrowDtype(pa.string()) ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("method", ["ceil", "floor", "round"]) def test_dt_roundlike_tz_options_not_supported(method): ser = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp("ns")), ) with pytest.raises(NotImplementedError, match="ambiguous is not supported."): getattr(ser.dt, method)("1H", ambiguous="NaT") with pytest.raises(NotImplementedError, match="nonexistent is not supported."): getattr(ser.dt, method)("1H", nonexistent="NaT") @pytest.mark.parametrize("method", ["ceil", "floor", "round"]) def test_dt_roundlike_unsupported_freq(method): ser = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp("ns")), ) with pytest.raises(ValueError, match="freq='1B' is not supported"): getattr(ser.dt, method)("1B") with pytest.raises(ValueError, match="Must specify a valid frequency: None"): getattr(ser.dt, method)(None) @pytest.mark.xfail( pa_version_under7p0, reason="Methods not supported for pyarrow < 7.0" ) @pytest.mark.parametrize("freq", ["D", "H", "T", "S", "L", "U", "N"]) @pytest.mark.parametrize("method", ["ceil", "floor", "round"]) def test_dt_ceil_year_floor(freq, method): ser = pd.Series( [datetime(year=2023, month=1, day=1), None], ) pa_dtype = ArrowDtype(pa.timestamp("ns")) expected = getattr(ser.dt, method)(f"1{freq}").astype(pa_dtype) result = getattr(ser.astype(pa_dtype).dt, method)(f"1{freq}") tm.assert_series_equal(result, expected) def test_dt_to_pydatetime(): # GH 51859 data = [datetime(2022, 1, 1), datetime(2023, 1, 1)] ser = pd.Series(data, dtype=ArrowDtype(pa.timestamp("ns"))) result = ser.dt.to_pydatetime() expected = np.array(data, dtype=object) tm.assert_numpy_array_equal(result, expected) assert all(type(res) is datetime for res in result) expected = ser.astype("datetime64[ns]").dt.to_pydatetime() tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("date_type", [32, 64]) def test_dt_to_pydatetime_date_error(date_type): # GH 52812 ser = pd.Series( [date(2022, 12, 31)], dtype=ArrowDtype(getattr(pa, f"date{date_type}")()), ) with pytest.raises(ValueError, match="to_pydatetime cannot be called with"): ser.dt.to_pydatetime() def test_dt_tz_localize_unsupported_tz_options(): ser = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp("ns")), ) with pytest.raises(NotImplementedError, match="ambiguous='NaT' is not supported"): ser.dt.tz_localize("UTC", ambiguous="NaT") with pytest.raises(NotImplementedError, match="nonexistent='NaT' is not supported"): ser.dt.tz_localize("UTC", nonexistent="NaT") def test_dt_tz_localize_none(): ser = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp("ns", tz="US/Pacific")), ) result = ser.dt.tz_localize(None) expected = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp("ns")), ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("unit", ["us", "ns"]) def test_dt_tz_localize(unit, request): if is_platform_windows() and is_ci_environment(): request.node.add_marker( pytest.mark.xfail( raises=pa.ArrowInvalid, reason=( "TODO: Set ARROW_TIMEZONE_DATABASE environment variable " "on CI to path to the tzdata for pyarrow." ), ) ) ser = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp(unit)), ) result = ser.dt.tz_localize("US/Pacific") exp_data = pa.array( [datetime(year=2023, month=1, day=2, hour=3), None], type=pa.timestamp(unit) ) exp_data = pa.compute.assume_timezone(exp_data, "US/Pacific") expected = pd.Series(ArrowExtensionArray(exp_data)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "nonexistent, exp_date", [ ["shift_forward", datetime(year=2023, month=3, day=12, hour=3)], ["shift_backward", pd.Timestamp("2023-03-12 01:59:59.999999999")], ], ) def test_dt_tz_localize_nonexistent(nonexistent, exp_date, request): if is_platform_windows() and is_ci_environment(): request.node.add_marker( pytest.mark.xfail( raises=pa.ArrowInvalid, reason=( "TODO: Set ARROW_TIMEZONE_DATABASE environment variable " "on CI to path to the tzdata for pyarrow." ), ) ) ser = pd.Series( [datetime(year=2023, month=3, day=12, hour=2, minute=30), None], dtype=ArrowDtype(pa.timestamp("ns")), ) result = ser.dt.tz_localize("US/Pacific", nonexistent=nonexistent) exp_data = pa.array([exp_date, None], type=pa.timestamp("ns")) exp_data = pa.compute.assume_timezone(exp_data, "US/Pacific") expected = pd.Series(ArrowExtensionArray(exp_data)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("skipna", [True, False]) def test_boolean_reduce_series_all_null(all_boolean_reductions, skipna): # GH51624 ser = pd.Series([None], dtype="float64[pyarrow]") result = getattr(ser, all_boolean_reductions)(skipna=skipna) if skipna: expected = all_boolean_reductions == "all" else: expected = pd.NA assert result is expected @pytest.mark.parametrize("dtype", ["string", "string[pyarrow]"]) def test_series_from_string_array(dtype): arr = pa.array("the quick brown fox".split()) ser = pd.Series(arr, dtype=dtype) expected = pd.Series(ArrowExtensionArray(arr), dtype=dtype) tm.assert_series_equal(ser, expected) def test_setitem_boolean_replace_with_mask_segfault(): # GH#52059 N = 145_000 arr = ArrowExtensionArray(pa.chunked_array([np.ones((N,), dtype=np.bool_)])) expected = arr.copy() arr[np.zeros((N,), dtype=np.bool_)] = False assert arr._data == expected._data @pytest.mark.parametrize( "data, arrow_dtype", [ ([b"a", b"b"], pa.large_binary()), (["a", "b"], pa.large_string()), ], ) def test_conversion_large_dtypes_from_numpy_array(data, arrow_dtype): dtype = ArrowDtype(arrow_dtype) result = pd.array(np.array(data), dtype=dtype) expected = pd.array(data, dtype=dtype) tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize("pa_type", tm.ALL_INT_PYARROW_DTYPES + tm.FLOAT_PYARROW_DTYPES) def test_describe_numeric_data(pa_type): # GH 52470 data = pd.Series([1, 2, 3], dtype=ArrowDtype(pa_type)) result = data.describe() expected = pd.Series( [3, 2, 1, 1, 1.5, 2.0, 2.5, 3], dtype=ArrowDtype(pa.float64()), index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("pa_type", tm.TIMEDELTA_PYARROW_DTYPES) def test_describe_timedelta_data(pa_type): # GH53001 data = pd.Series(range(1, 10), dtype=ArrowDtype(pa_type)) result = data.describe() expected = pd.Series( [9] + pd.to_timedelta([5, 2, 1, 3, 5, 7, 9], unit=pa_type.unit).tolist(), dtype=object, index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("pa_type", tm.DATETIME_PYARROW_DTYPES) def test_describe_datetime_data(pa_type): # GH53001 data = pd.Series(range(1, 10), dtype=ArrowDtype(pa_type)) result = data.describe() expected = pd.Series( [9] + [ pd.Timestamp(v, tz=pa_type.tz, unit=pa_type.unit) for v in [5, 1, 3, 5, 7, 9] ], dtype=object, index=["count", "mean", "min", "25%", "50%", "75%", "max"], ) tm.assert_series_equal(result, expected) @pytest.mark.xfail( pa_version_under8p0, reason="Function 'add_checked' has no kernel matching input types", raises=pa.ArrowNotImplementedError, ) def test_duration_overflow_from_ndarray_containing_nat(): # GH52843 data_ts = pd.to_datetime([1, None]) data_td = pd.to_timedelta([1, None]) ser_ts = pd.Series(data_ts, dtype=ArrowDtype(pa.timestamp("ns"))) ser_td = pd.Series(data_td, dtype=ArrowDtype(pa.duration("ns"))) result = ser_ts + ser_td expected = pd.Series([2, None], dtype=ArrowDtype(pa.timestamp("ns"))) tm.assert_series_equal(result, expected)