from __future__ import annotations from pandas._typing import AxisInt from pandas import ( DataFrame, concat, ) def _check_mixed_float(df, dtype=None): # float16 are most likely to be upcasted to float32 dtypes = {"A": "float32", "B": "float32", "C": "float16", "D": "float64"} if isinstance(dtype, str): dtypes = {k: dtype for k, v in dtypes.items()} elif isinstance(dtype, dict): dtypes.update(dtype) if dtypes.get("A"): assert df.dtypes["A"] == dtypes["A"] if dtypes.get("B"): assert df.dtypes["B"] == dtypes["B"] if dtypes.get("C"): assert df.dtypes["C"] == dtypes["C"] if dtypes.get("D"): assert df.dtypes["D"] == dtypes["D"] def _check_mixed_int(df, dtype=None): dtypes = {"A": "int32", "B": "uint64", "C": "uint8", "D": "int64"} if isinstance(dtype, str): dtypes = {k: dtype for k, v in dtypes.items()} elif isinstance(dtype, dict): dtypes.update(dtype) if dtypes.get("A"): assert df.dtypes["A"] == dtypes["A"] if dtypes.get("B"): assert df.dtypes["B"] == dtypes["B"] if dtypes.get("C"): assert df.dtypes["C"] == dtypes["C"] if dtypes.get("D"): assert df.dtypes["D"] == dtypes["D"] def zip_frames(frames: list[DataFrame], axis: AxisInt = 1) -> DataFrame: """ take a list of frames, zip them together under the assumption that these all have the first frames' index/columns. Returns ------- new_frame : DataFrame """ if axis == 1: columns = frames[0].columns zipped = [f.loc[:, c] for c in columns for f in frames] return concat(zipped, axis=1) else: index = frames[0].index zipped = [f.loc[i, :] for i in index for f in frames] return DataFrame(zipped)