""" Tests for values coercion in setitem-like operations on DataFrame. For the most part, these should be multi-column DataFrames, otherwise we would share the tests with Series. """ import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, MultiIndex, NaT, Series, Timestamp, date_range, ) import pandas._testing as tm class TestDataFrameSetitemCoercion: @pytest.mark.parametrize("consolidate", [True, False]) def test_loc_setitem_multiindex_columns(self, consolidate): # GH#18415 Setting values in a single column preserves dtype, # while setting them in multiple columns did unwanted cast. # Note that A here has 2 blocks, below we do the same thing # with a consolidated frame. A = DataFrame(np.zeros((6, 5), dtype=np.float32)) A = pd.concat([A, A], axis=1, keys=[1, 2]) if consolidate: A = A._consolidate() A.loc[2:3, (1, slice(2, 3))] = np.ones((2, 2), dtype=np.float32) assert (A.dtypes == np.float32).all() A.loc[0:5, (1, slice(2, 3))] = np.ones((6, 2), dtype=np.float32) assert (A.dtypes == np.float32).all() A.loc[:, (1, slice(2, 3))] = np.ones((6, 2), dtype=np.float32) assert (A.dtypes == np.float32).all() # TODO: i think this isn't about MultiIndex and could be done with iloc? def test_37477(): # fixed by GH#45121 orig = DataFrame({"A": [1, 2, 3], "B": [3, 4, 5]}) expected = DataFrame({"A": [1, 2, 3], "B": [3, 1.2, 5]}) df = orig.copy() df.at[1, "B"] = 1.2 tm.assert_frame_equal(df, expected) df = orig.copy() df.loc[1, "B"] = 1.2 tm.assert_frame_equal(df, expected) df = orig.copy() df.iat[1, 1] = 1.2 tm.assert_frame_equal(df, expected) df = orig.copy() df.iloc[1, 1] = 1.2 tm.assert_frame_equal(df, expected) def test_6942(indexer_al): # check that the .at __setitem__ after setting "Live" actually sets the data start = Timestamp("2014-04-01") t1 = Timestamp("2014-04-23 12:42:38.883082") t2 = Timestamp("2014-04-24 01:33:30.040039") dti = date_range(start, periods=1) orig = DataFrame(index=dti, columns=["timenow", "Live"]) df = orig.copy() indexer_al(df)[start, "timenow"] = t1 df["Live"] = True df.at[start, "timenow"] = t2 assert df.iloc[0, 0] == t2 def test_26395(indexer_al): # .at case fixed by GH#45121 (best guess) df = DataFrame(index=["A", "B", "C"]) df["D"] = 0 indexer_al(df)["C", "D"] = 2 expected = DataFrame({"D": [0, 0, 2]}, index=["A", "B", "C"], dtype=np.int64) tm.assert_frame_equal(df, expected) indexer_al(df)["C", "D"] = 44.5 expected = DataFrame({"D": [0, 0, 44.5]}, index=["A", "B", "C"], dtype=np.float64) tm.assert_frame_equal(df, expected) indexer_al(df)["C", "D"] = "hello" expected = DataFrame({"D": [0, 0, "hello"]}, index=["A", "B", "C"], dtype=object) tm.assert_frame_equal(df, expected) @pytest.mark.xfail(reason="unwanted upcast") def test_15231(): df = DataFrame([[1, 2], [3, 4]], columns=["a", "b"]) df.loc[2] = Series({"a": 5, "b": 6}) assert (df.dtypes == np.int64).all() df.loc[3] = Series({"a": 7}) # df["a"] doesn't have any NaNs, should not have been cast exp_dtypes = Series([np.int64, np.float64], dtype=object, index=["a", "b"]) tm.assert_series_equal(df.dtypes, exp_dtypes) def test_iloc_setitem_unnecesssary_float_upcasting(): # GH#12255 df = DataFrame( { 0: np.array([1, 3], dtype=np.float32), 1: np.array([2, 4], dtype=np.float32), 2: ["a", "b"], } ) orig = df.copy() values = df[0].values.reshape(2, 1) df.iloc[:, 0:1] = values tm.assert_frame_equal(df, orig) @pytest.mark.xfail(reason="unwanted casting to dt64") def test_12499(): # TODO: OP in GH#12499 used np.datetim64("NaT") instead of pd.NaT, # which has consequences for the expected df["two"] (though i think at # the time it might not have because of a separate bug). See if it makes # a difference which one we use here. ts = Timestamp("2016-03-01 03:13:22.98986", tz="UTC") data = [{"one": 0, "two": ts}] orig = DataFrame(data) df = orig.copy() df.loc[1] = [np.nan, NaT] expected = DataFrame( {"one": [0, np.nan], "two": Series([ts, NaT], dtype="datetime64[ns, UTC]")} ) tm.assert_frame_equal(df, expected) data = [{"one": 0, "two": ts}] df = orig.copy() df.loc[1, :] = [np.nan, NaT] tm.assert_frame_equal(df, expected) def test_20476(): mi = MultiIndex.from_product([["A", "B"], ["a", "b", "c"]]) df = DataFrame(-1, index=range(3), columns=mi) filler = DataFrame([[1, 2, 3.0]] * 3, index=range(3), columns=["a", "b", "c"]) df["A"] = filler expected = DataFrame( { 0: [1, 1, 1], 1: [2, 2, 2], 2: [3.0, 3.0, 3.0], 3: [-1, -1, -1], 4: [-1, -1, -1], 5: [-1, -1, -1], } ) expected.columns = mi exp_dtypes = Series( [np.dtype(np.int64)] * 2 + [np.dtype(np.float64)] + [np.dtype(np.int64)] * 3, index=mi, ) tm.assert_series_equal(df.dtypes, exp_dtypes)