from datetime import datetime from hypothesis import given import numpy as np import pytest from pandas.core.dtypes.common import is_scalar import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Index, Series, StringDtype, Timestamp, date_range, isna, ) import pandas._testing as tm from pandas._testing._hypothesis import OPTIONAL_ONE_OF_ALL @pytest.fixture(params=["default", "float_string", "mixed_float", "mixed_int"]) def where_frame(request, float_string_frame, mixed_float_frame, mixed_int_frame): if request.param == "default": return DataFrame(np.random.randn(5, 3), columns=["A", "B", "C"]) if request.param == "float_string": return float_string_frame if request.param == "mixed_float": return mixed_float_frame if request.param == "mixed_int": return mixed_int_frame def _safe_add(df): # only add to the numeric items def is_ok(s): return ( issubclass(s.dtype.type, (np.integer, np.floating)) and s.dtype != "uint8" ) return DataFrame(dict((c, s + 1) if is_ok(s) else (c, s) for c, s in df.items())) class TestDataFrameIndexingWhere: def test_where_get(self, where_frame, float_string_frame): def _check_get(df, cond, check_dtypes=True): other1 = _safe_add(df) rs = df.where(cond, other1) rs2 = df.where(cond.values, other1) for k, v in rs.items(): exp = Series(np.where(cond[k], df[k], other1[k]), index=v.index) tm.assert_series_equal(v, exp, check_names=False) tm.assert_frame_equal(rs, rs2) # dtypes if check_dtypes: assert (rs.dtypes == df.dtypes).all() # check getting df = where_frame if df is float_string_frame: msg = "'>' not supported between instances of 'str' and 'int'" with pytest.raises(TypeError, match=msg): df > 0 return cond = df > 0 _check_get(df, cond) def test_where_upcasting(self): # upcasting case (GH # 2794) df = DataFrame( { c: Series([1] * 3, dtype=c) for c in ["float32", "float64", "int32", "int64"] } ) df.iloc[1, :] = 0 result = df.dtypes expected = Series( [ np.dtype("float32"), np.dtype("float64"), np.dtype("int32"), np.dtype("int64"), ], index=["float32", "float64", "int32", "int64"], ) # when we don't preserve boolean casts # # expected = Series({ 'float32' : 1, 'float64' : 3 }) tm.assert_series_equal(result, expected) def test_where_alignment(self, where_frame, float_string_frame): # aligning def _check_align(df, cond, other, check_dtypes=True): rs = df.where(cond, other) for i, k in enumerate(rs.columns): result = rs[k] d = df[k].values c = cond[k].reindex(df[k].index).fillna(False).values if is_scalar(other): o = other else: if isinstance(other, np.ndarray): o = Series(other[:, i], index=result.index).values else: o = other[k].values new_values = d if c.all() else np.where(c, d, o) expected = Series(new_values, index=result.index, name=k) # since we can't always have the correct numpy dtype # as numpy doesn't know how to downcast, don't check tm.assert_series_equal(result, expected, check_dtype=False) # dtypes # can't check dtype when other is an ndarray if check_dtypes and not isinstance(other, np.ndarray): assert (rs.dtypes == df.dtypes).all() df = where_frame if df is float_string_frame: msg = "'>' not supported between instances of 'str' and 'int'" with pytest.raises(TypeError, match=msg): df > 0 return # other is a frame cond = (df > 0)[1:] _check_align(df, cond, _safe_add(df)) # check other is ndarray cond = df > 0 _check_align(df, cond, (_safe_add(df).values)) # integers are upcast, so don't check the dtypes cond = df > 0 check_dtypes = all(not issubclass(s.type, np.integer) for s in df.dtypes) _check_align(df, cond, np.nan, check_dtypes=check_dtypes) def test_where_invalid(self): # invalid conditions df = DataFrame(np.random.randn(5, 3), columns=["A", "B", "C"]) cond = df > 0 err1 = (df + 1).values[0:2, :] msg = "other must be the same shape as self when an ndarray" with pytest.raises(ValueError, match=msg): df.where(cond, err1) err2 = cond.iloc[:2, :].values other1 = _safe_add(df) msg = "Array conditional must be same shape as self" with pytest.raises(ValueError, match=msg): df.where(err2, other1) with pytest.raises(ValueError, match=msg): df.mask(True) with pytest.raises(ValueError, match=msg): df.mask(0) def test_where_set(self, where_frame, float_string_frame): # where inplace def _check_set(df, cond, check_dtypes=True): dfi = df.copy() econd = cond.reindex_like(df).fillna(True) expected = dfi.mask(~econd) return_value = dfi.where(cond, np.nan, inplace=True) assert return_value is None tm.assert_frame_equal(dfi, expected) # dtypes (and confirm upcasts)x if check_dtypes: for k, v in df.dtypes.items(): if issubclass(v.type, np.integer) and not cond[k].all(): v = np.dtype("float64") assert dfi[k].dtype == v df = where_frame if df is float_string_frame: msg = "'>' not supported between instances of 'str' and 'int'" with pytest.raises(TypeError, match=msg): df > 0 return cond = df > 0 _check_set(df, cond) cond = df >= 0 _check_set(df, cond) # aligning cond = (df >= 0)[1:] _check_set(df, cond) def test_where_series_slicing(self): # GH 10218 # test DataFrame.where with Series slicing df = DataFrame({"a": range(3), "b": range(4, 7)}) result = df.where(df["a"] == 1) expected = df[df["a"] == 1].reindex(df.index) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("klass", [list, tuple, np.array]) def test_where_array_like(self, klass): # see gh-15414 df = DataFrame({"a": [1, 2, 3]}) cond = [[False], [True], [True]] expected = DataFrame({"a": [np.nan, 2, 3]}) result = df.where(klass(cond)) tm.assert_frame_equal(result, expected) df["b"] = 2 expected["b"] = [2, np.nan, 2] cond = [[False, True], [True, False], [True, True]] result = df.where(klass(cond)) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "cond", [ [[1], [0], [1]], Series([[2], [5], [7]]), DataFrame({"a": [2, 5, 7]}), [["True"], ["False"], ["True"]], [[Timestamp("2017-01-01")], [pd.NaT], [Timestamp("2017-01-02")]], ], ) def test_where_invalid_input_single(self, cond): # see gh-15414: only boolean arrays accepted df = DataFrame({"a": [1, 2, 3]}) msg = "Boolean array expected for the condition" with pytest.raises(ValueError, match=msg): df.where(cond) @pytest.mark.parametrize( "cond", [ [[0, 1], [1, 0], [1, 1]], Series([[0, 2], [5, 0], [4, 7]]), [["False", "True"], ["True", "False"], ["True", "True"]], DataFrame({"a": [2, 5, 7], "b": [4, 8, 9]}), [ [pd.NaT, Timestamp("2017-01-01")], [Timestamp("2017-01-02"), pd.NaT], [Timestamp("2017-01-03"), Timestamp("2017-01-03")], ], ], ) def test_where_invalid_input_multiple(self, cond): # see gh-15414: only boolean arrays accepted df = DataFrame({"a": [1, 2, 3], "b": [2, 2, 2]}) msg = "Boolean array expected for the condition" with pytest.raises(ValueError, match=msg): df.where(cond) def test_where_dataframe_col_match(self): df = DataFrame([[1, 2, 3], [4, 5, 6]]) cond = DataFrame([[True, False, True], [False, False, True]]) result = df.where(cond) expected = DataFrame([[1.0, np.nan, 3], [np.nan, np.nan, 6]]) tm.assert_frame_equal(result, expected) # this *does* align, though has no matching columns cond.columns = ["a", "b", "c"] result = df.where(cond) expected = DataFrame(np.nan, index=df.index, columns=df.columns) tm.assert_frame_equal(result, expected) def test_where_ndframe_align(self): msg = "Array conditional must be same shape as self" df = DataFrame([[1, 2, 3], [4, 5, 6]]) cond = [True] with pytest.raises(ValueError, match=msg): df.where(cond) expected = DataFrame([[1, 2, 3], [np.nan, np.nan, np.nan]]) out = df.where(Series(cond)) tm.assert_frame_equal(out, expected) cond = np.array([False, True, False, True]) with pytest.raises(ValueError, match=msg): df.where(cond) expected = DataFrame([[np.nan, np.nan, np.nan], [4, 5, 6]]) out = df.where(Series(cond)) tm.assert_frame_equal(out, expected) def test_where_bug(self): # see gh-2793 df = DataFrame( {"a": [1.0, 2.0, 3.0, 4.0], "b": [4.0, 3.0, 2.0, 1.0]}, dtype="float64" ) expected = DataFrame( {"a": [np.nan, np.nan, 3.0, 4.0], "b": [4.0, 3.0, np.nan, np.nan]}, dtype="float64", ) result = df.where(df > 2, np.nan) tm.assert_frame_equal(result, expected) result = df.copy() return_value = result.where(result > 2, np.nan, inplace=True) assert return_value is None tm.assert_frame_equal(result, expected) def test_where_bug_mixed(self, any_signed_int_numpy_dtype): # see gh-2793 df = DataFrame( { "a": np.array([1, 2, 3, 4], dtype=any_signed_int_numpy_dtype), "b": np.array([4.0, 3.0, 2.0, 1.0], dtype="float64"), } ) expected = DataFrame( {"a": [np.nan, np.nan, 3.0, 4.0], "b": [4.0, 3.0, np.nan, np.nan]}, dtype="float64", ) result = df.where(df > 2, np.nan) tm.assert_frame_equal(result, expected) result = df.copy() return_value = result.where(result > 2, np.nan, inplace=True) assert return_value is None tm.assert_frame_equal(result, expected) def test_where_bug_transposition(self): # see gh-7506 a = DataFrame({0: [1, 2], 1: [3, 4], 2: [5, 6]}) b = DataFrame({0: [np.nan, 8], 1: [9, np.nan], 2: [np.nan, np.nan]}) do_not_replace = b.isna() | (a > b) expected = a.copy() expected[~do_not_replace] = b result = a.where(do_not_replace, b) tm.assert_frame_equal(result, expected) a = DataFrame({0: [4, 6], 1: [1, 0]}) b = DataFrame({0: [np.nan, 3], 1: [3, np.nan]}) do_not_replace = b.isna() | (a > b) expected = a.copy() expected[~do_not_replace] = b result = a.where(do_not_replace, b) tm.assert_frame_equal(result, expected) def test_where_datetime(self): # GH 3311 df = DataFrame( { "A": date_range("20130102", periods=5), "B": date_range("20130104", periods=5), "C": np.random.randn(5), } ) stamp = datetime(2013, 1, 3) msg = "'>' not supported between instances of 'float' and 'datetime.datetime'" with pytest.raises(TypeError, match=msg): df > stamp result = df[df.iloc[:, :-1] > stamp] expected = df.copy() expected.loc[[0, 1], "A"] = np.nan expected.loc[:, "C"] = np.nan tm.assert_frame_equal(result, expected) def test_where_none(self): # GH 4667 # setting with None changes dtype df = DataFrame({"series": Series(range(10))}).astype(float) df[df > 7] = None expected = DataFrame( {"series": Series([0, 1, 2, 3, 4, 5, 6, 7, np.nan, np.nan])} ) tm.assert_frame_equal(df, expected) # GH 7656 df = DataFrame( [ {"A": 1, "B": np.nan, "C": "Test"}, {"A": np.nan, "B": "Test", "C": np.nan}, ] ) msg = "boolean setting on mixed-type" with pytest.raises(TypeError, match=msg): df.where(~isna(df), None, inplace=True) def test_where_empty_df_and_empty_cond_having_non_bool_dtypes(self): # see gh-21947 df = DataFrame(columns=["a"]) cond = df assert (cond.dtypes == object).all() result = df.where(cond) tm.assert_frame_equal(result, df) def test_where_align(self): def create(): df = DataFrame(np.random.randn(10, 3)) df.iloc[3:5, 0] = np.nan df.iloc[4:6, 1] = np.nan df.iloc[5:8, 2] = np.nan return df # series df = create() expected = df.fillna(df.mean()) result = df.where(pd.notna(df), df.mean(), axis="columns") tm.assert_frame_equal(result, expected) return_value = df.where(pd.notna(df), df.mean(), inplace=True, axis="columns") assert return_value is None tm.assert_frame_equal(df, expected) df = create().fillna(0) expected = df.apply(lambda x, y: x.where(x > 0, y), y=df[0]) result = df.where(df > 0, df[0], axis="index") tm.assert_frame_equal(result, expected) result = df.where(df > 0, df[0], axis="rows") tm.assert_frame_equal(result, expected) # frame df = create() expected = df.fillna(1) result = df.where( pd.notna(df), DataFrame(1, index=df.index, columns=df.columns) ) tm.assert_frame_equal(result, expected) def test_where_complex(self): # GH 6345 expected = DataFrame([[1 + 1j, 2], [np.nan, 4 + 1j]], columns=["a", "b"]) df = DataFrame([[1 + 1j, 2], [5 + 1j, 4 + 1j]], columns=["a", "b"]) df[df.abs() >= 5] = np.nan tm.assert_frame_equal(df, expected) def test_where_axis(self): # GH 9736 df = DataFrame(np.random.randn(2, 2)) mask = DataFrame([[False, False], [False, False]]) ser = Series([0, 1]) expected = DataFrame([[0, 0], [1, 1]], dtype="float64") result = df.where(mask, ser, axis="index") tm.assert_frame_equal(result, expected) result = df.copy() return_value = result.where(mask, ser, axis="index", inplace=True) assert return_value is None tm.assert_frame_equal(result, expected) expected = DataFrame([[0, 1], [0, 1]], dtype="float64") result = df.where(mask, ser, axis="columns") tm.assert_frame_equal(result, expected) result = df.copy() return_value = result.where(mask, ser, axis="columns", inplace=True) assert return_value is None tm.assert_frame_equal(result, expected) def test_where_axis_with_upcast(self): # Upcast needed df = DataFrame([[1, 2], [3, 4]], dtype="int64") mask = DataFrame([[False, False], [False, False]]) ser = Series([0, np.nan]) expected = DataFrame([[0, 0], [np.nan, np.nan]], dtype="float64") result = df.where(mask, ser, axis="index") tm.assert_frame_equal(result, expected) result = df.copy() return_value = result.where(mask, ser, axis="index", inplace=True) assert return_value is None tm.assert_frame_equal(result, expected) expected = DataFrame([[0, np.nan], [0, np.nan]]) result = df.where(mask, ser, axis="columns") tm.assert_frame_equal(result, expected) expected = DataFrame( { 0: np.array([0, 0], dtype="int64"), 1: np.array([np.nan, np.nan], dtype="float64"), } ) result = df.copy() return_value = result.where(mask, ser, axis="columns", inplace=True) assert return_value is None tm.assert_frame_equal(result, expected) def test_where_axis_multiple_dtypes(self): # Multiple dtypes (=> multiple Blocks) df = pd.concat( [ DataFrame(np.random.randn(10, 2)), DataFrame(np.random.randint(0, 10, size=(10, 2)), dtype="int64"), ], ignore_index=True, axis=1, ) mask = DataFrame(False, columns=df.columns, index=df.index) s1 = Series(1, index=df.columns) s2 = Series(2, index=df.index) result = df.where(mask, s1, axis="columns") expected = DataFrame(1.0, columns=df.columns, index=df.index) expected[2] = expected[2].astype("int64") expected[3] = expected[3].astype("int64") tm.assert_frame_equal(result, expected) result = df.copy() return_value = result.where(mask, s1, axis="columns", inplace=True) assert return_value is None tm.assert_frame_equal(result, expected) result = df.where(mask, s2, axis="index") expected = DataFrame(2.0, columns=df.columns, index=df.index) expected[2] = expected[2].astype("int64") expected[3] = expected[3].astype("int64") tm.assert_frame_equal(result, expected) result = df.copy() return_value = result.where(mask, s2, axis="index", inplace=True) assert return_value is None tm.assert_frame_equal(result, expected) # DataFrame vs DataFrame d1 = df.copy().drop(1, axis=0) # Explicit cast to avoid implicit cast when setting value to np.nan expected = df.copy().astype("float") expected.loc[1, :] = np.nan result = df.where(mask, d1) tm.assert_frame_equal(result, expected) result = df.where(mask, d1, axis="index") tm.assert_frame_equal(result, expected) result = df.copy() return_value = result.where(mask, d1, inplace=True) assert return_value is None tm.assert_frame_equal(result, expected) result = df.copy() return_value = result.where(mask, d1, inplace=True, axis="index") assert return_value is None tm.assert_frame_equal(result, expected) d2 = df.copy().drop(1, axis=1) expected = df.copy() expected.loc[:, 1] = np.nan result = df.where(mask, d2) tm.assert_frame_equal(result, expected) result = df.where(mask, d2, axis="columns") tm.assert_frame_equal(result, expected) result = df.copy() return_value = result.where(mask, d2, inplace=True) assert return_value is None tm.assert_frame_equal(result, expected) result = df.copy() return_value = result.where(mask, d2, inplace=True, axis="columns") assert return_value is None tm.assert_frame_equal(result, expected) def test_where_callable(self): # GH 12533 df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) result = df.where(lambda x: x > 4, lambda x: x + 1) exp = DataFrame([[2, 3, 4], [5, 5, 6], [7, 8, 9]]) tm.assert_frame_equal(result, exp) tm.assert_frame_equal(result, df.where(df > 4, df + 1)) # return ndarray and scalar result = df.where(lambda x: (x % 2 == 0).values, lambda x: 99) exp = DataFrame([[99, 2, 99], [4, 99, 6], [99, 8, 99]]) tm.assert_frame_equal(result, exp) tm.assert_frame_equal(result, df.where(df % 2 == 0, 99)) # chain result = (df + 2).where(lambda x: x > 8, lambda x: x + 10) exp = DataFrame([[13, 14, 15], [16, 17, 18], [9, 10, 11]]) tm.assert_frame_equal(result, exp) tm.assert_frame_equal(result, (df + 2).where((df + 2) > 8, (df + 2) + 10)) def test_where_tz_values(self, tz_naive_fixture, frame_or_series): obj1 = DataFrame( DatetimeIndex(["20150101", "20150102", "20150103"], tz=tz_naive_fixture), columns=["date"], ) obj2 = DataFrame( DatetimeIndex(["20150103", "20150104", "20150105"], tz=tz_naive_fixture), columns=["date"], ) mask = DataFrame([True, True, False], columns=["date"]) exp = DataFrame( DatetimeIndex(["20150101", "20150102", "20150105"], tz=tz_naive_fixture), columns=["date"], ) if frame_or_series is Series: obj1 = obj1["date"] obj2 = obj2["date"] mask = mask["date"] exp = exp["date"] result = obj1.where(mask, obj2) tm.assert_equal(exp, result) def test_df_where_change_dtype(self): # GH#16979 df = DataFrame(np.arange(2 * 3).reshape(2, 3), columns=list("ABC")) mask = np.array([[True, False, False], [False, False, True]]) result = df.where(mask) expected = DataFrame( [[0, np.nan, np.nan], [np.nan, np.nan, 5]], columns=list("ABC") ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("kwargs", [{}, {"other": None}]) def test_df_where_with_category(self, kwargs): # GH#16979 data = np.arange(2 * 3, dtype=np.int64).reshape(2, 3) df = DataFrame(data, columns=list("ABC")) mask = np.array([[True, False, False], [False, False, True]]) # change type to category df.A = df.A.astype("category") df.B = df.B.astype("category") df.C = df.C.astype("category") result = df.where(mask, **kwargs) A = pd.Categorical([0, np.nan], categories=[0, 3]) B = pd.Categorical([np.nan, np.nan], categories=[1, 4]) C = pd.Categorical([np.nan, 5], categories=[2, 5]) expected = DataFrame({"A": A, "B": B, "C": C}) tm.assert_frame_equal(result, expected) # Check Series.where while we're here result = df.A.where(mask[:, 0], **kwargs) expected = Series(A, name="A") tm.assert_series_equal(result, expected) def test_where_categorical_filtering(self): # GH#22609 Verify filtering operations on DataFrames with categorical Series df = DataFrame(data=[[0, 0], [1, 1]], columns=["a", "b"]) df["b"] = df["b"].astype("category") result = df.where(df["a"] > 0) # Explicitly cast to 'float' to avoid implicit cast when setting np.nan expected = df.copy().astype({"a": "float"}) expected.loc[0, :] = np.nan tm.assert_equal(result, expected) def test_where_ea_other(self): # GH#38729/GH#38742 df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) arr = pd.array([7, pd.NA, 9]) ser = Series(arr) mask = np.ones(df.shape, dtype=bool) mask[1, :] = False # TODO: ideally we would get Int64 instead of object result = df.where(mask, ser, axis=0) expected = DataFrame({"A": [1, pd.NA, 3], "B": [4, pd.NA, 6]}).astype(object) tm.assert_frame_equal(result, expected) ser2 = Series(arr[:2], index=["A", "B"]) expected = DataFrame({"A": [1, 7, 3], "B": [4, pd.NA, 6]}) expected["B"] = expected["B"].astype(object) result = df.where(mask, ser2, axis=1) tm.assert_frame_equal(result, expected) def test_where_interval_noop(self): # GH#44181 df = DataFrame([pd.Interval(0, 0)]) res = df.where(df.notna()) tm.assert_frame_equal(res, df) ser = df[0] res = ser.where(ser.notna()) tm.assert_series_equal(res, ser) def test_where_interval_fullop_downcast(self, frame_or_series): # GH#45768 obj = frame_or_series([pd.Interval(0, 0)] * 2) other = frame_or_series([1.0, 2.0]) res = obj.where(~obj.notna(), other) # since all entries are being changed, we will downcast result # from object to ints (not floats) tm.assert_equal(res, other.astype(np.int64)) # unlike where, Block.putmask does not downcast obj.mask(obj.notna(), other, inplace=True) tm.assert_equal(obj, other.astype(object)) @pytest.mark.parametrize( "dtype", [ "timedelta64[ns]", "datetime64[ns]", "datetime64[ns, Asia/Tokyo]", "Period[D]", ], ) def test_where_datetimelike_noop(self, dtype): # GH#45135, analogue to GH#44181 for Period don't raise on no-op # For td64/dt64/dt64tz we already don't raise, but also are # checking that we don't unnecessarily upcast to object. ser = Series(np.arange(3) * 10**9, dtype=np.int64).view(dtype) df = ser.to_frame() mask = np.array([False, False, False]) res = ser.where(~mask, "foo") tm.assert_series_equal(res, ser) mask2 = mask.reshape(-1, 1) res2 = df.where(~mask2, "foo") tm.assert_frame_equal(res2, df) res3 = ser.mask(mask, "foo") tm.assert_series_equal(res3, ser) res4 = df.mask(mask2, "foo") tm.assert_frame_equal(res4, df) # opposite case where we are replacing *all* values -> we downcast # from object dtype # GH#45768 res5 = df.where(mask2, 4) expected = DataFrame(4, index=df.index, columns=df.columns) tm.assert_frame_equal(res5, expected) # unlike where, Block.putmask does not downcast df.mask(~mask2, 4, inplace=True) tm.assert_frame_equal(df, expected.astype(object)) def test_where_int_downcasting_deprecated(): # GH#44597 arr = np.arange(6).astype(np.int16).reshape(3, 2) df = DataFrame(arr) mask = np.zeros(arr.shape, dtype=bool) mask[:, 0] = True res = df.where(mask, 2**17) expected = DataFrame({0: arr[:, 0], 1: np.array([2**17] * 3, dtype=np.int32)}) tm.assert_frame_equal(res, expected) def test_where_copies_with_noop(frame_or_series): # GH-39595 result = frame_or_series([1, 2, 3, 4]) expected = result.copy() col = result[0] if frame_or_series is DataFrame else result where_res = result.where(col < 5) where_res *= 2 tm.assert_equal(result, expected) where_res = result.where(col > 5, [1, 2, 3, 4]) where_res *= 2 tm.assert_equal(result, expected) def test_where_string_dtype(frame_or_series): # GH40824 obj = frame_or_series( ["a", "b", "c", "d"], index=["id1", "id2", "id3", "id4"], dtype=StringDtype() ) filtered_obj = frame_or_series( ["b", "c"], index=["id2", "id3"], dtype=StringDtype() ) filter_ser = Series([False, True, True, False]) result = obj.where(filter_ser, filtered_obj) expected = frame_or_series( [pd.NA, "b", "c", pd.NA], index=["id1", "id2", "id3", "id4"], dtype=StringDtype(), ) tm.assert_equal(result, expected) result = obj.mask(~filter_ser, filtered_obj) tm.assert_equal(result, expected) obj.mask(~filter_ser, filtered_obj, inplace=True) tm.assert_equal(result, expected) def test_where_bool_comparison(): # GH 10336 df_mask = DataFrame( {"AAA": [True] * 4, "BBB": [False] * 4, "CCC": [True, False, True, False]} ) result = df_mask.where(df_mask == False) # noqa:E712 expected = DataFrame( { "AAA": np.array([np.nan] * 4, dtype=object), "BBB": [False] * 4, "CCC": [np.nan, False, np.nan, False], } ) tm.assert_frame_equal(result, expected) def test_where_none_nan_coerce(): # GH 15613 expected = DataFrame( { "A": [Timestamp("20130101"), pd.NaT, Timestamp("20130103")], "B": [1, 2, np.nan], } ) result = expected.where(expected.notnull(), None) tm.assert_frame_equal(result, expected) def test_where_duplicate_axes_mixed_dtypes(): # GH 25399, verify manually masking is not affected anymore by dtype of column for # duplicate axes. result = DataFrame(data=[[0, np.nan]], columns=Index(["A", "A"])) index, columns = result.axes mask = DataFrame(data=[[True, True]], columns=columns, index=index) a = result.astype(object).where(mask) b = result.astype("f8").where(mask) c = result.T.where(mask.T).T d = result.where(mask) # used to fail with "cannot reindex from a duplicate axis" tm.assert_frame_equal(a.astype("f8"), b.astype("f8")) tm.assert_frame_equal(b.astype("f8"), c.astype("f8")) tm.assert_frame_equal(c.astype("f8"), d.astype("f8")) def test_where_columns_casting(): # GH 42295 df = DataFrame({"a": [1.0, 2.0], "b": [3, np.nan]}) expected = df.copy() result = df.where(pd.notnull(df), None) # make sure dtypes don't change tm.assert_frame_equal(expected, result) @pytest.mark.parametrize("as_cat", [True, False]) def test_where_period_invalid_na(frame_or_series, as_cat, request): # GH#44697 idx = pd.period_range("2016-01-01", periods=3, freq="D") if as_cat: idx = idx.astype("category") obj = frame_or_series(idx) # NA value that we should *not* cast to Period dtype tdnat = pd.NaT.to_numpy("m8[ns]") mask = np.array([True, True, False], ndmin=obj.ndim).T if as_cat: msg = ( r"Cannot setitem on a Categorical with a new category \(NaT\), " "set the categories first" ) else: msg = "value should be a 'Period'" if as_cat: with pytest.raises(TypeError, match=msg): obj.where(mask, tdnat) with pytest.raises(TypeError, match=msg): obj.mask(mask, tdnat) with pytest.raises(TypeError, match=msg): obj.mask(mask, tdnat, inplace=True) else: # With PeriodDtype, ser[i] = tdnat coerces instead of raising, # so for consistency, ser[mask] = tdnat must as well expected = obj.astype(object).where(mask, tdnat) result = obj.where(mask, tdnat) tm.assert_equal(result, expected) expected = obj.astype(object).mask(mask, tdnat) result = obj.mask(mask, tdnat) tm.assert_equal(result, expected) obj.mask(mask, tdnat, inplace=True) tm.assert_equal(obj, expected) def test_where_nullable_invalid_na(frame_or_series, any_numeric_ea_dtype): # GH#44697 arr = pd.array([1, 2, 3], dtype=any_numeric_ea_dtype) obj = frame_or_series(arr) mask = np.array([True, True, False], ndmin=obj.ndim).T msg = r"Invalid value '.*' for dtype (U?Int|Float)\d{1,2}" for null in tm.NP_NAT_OBJECTS + [pd.NaT]: # NaT is an NA value that we should *not* cast to pd.NA dtype with pytest.raises(TypeError, match=msg): obj.where(mask, null) with pytest.raises(TypeError, match=msg): obj.mask(mask, null) @given(data=OPTIONAL_ONE_OF_ALL) def test_where_inplace_casting(data): # GH 22051 df = DataFrame({"a": data}) df_copy = df.where(pd.notnull(df), None).copy() df.where(pd.notnull(df), None, inplace=True) tm.assert_equal(df, df_copy) def test_where_downcast_to_td64(): ser = Series([1, 2, 3]) mask = np.array([False, False, False]) td = pd.Timedelta(days=1) res = ser.where(mask, td) expected = Series([td, td, td], dtype="m8[ns]") tm.assert_series_equal(res, expected) def _check_where_equivalences(df, mask, other, expected): # similar to tests.series.indexing.test_setitem.SetitemCastingEquivalences # but with DataFrame in mind and less fleshed-out res = df.where(mask, other) tm.assert_frame_equal(res, expected) res = df.mask(~mask, other) tm.assert_frame_equal(res, expected) # Note: frame.mask(~mask, other, inplace=True) takes some more work bc # Block.putmask does *not* downcast. The change to 'expected' here # is specific to the cases in test_where_dt64_2d. df = df.copy() df.mask(~mask, other, inplace=True) if not mask.all(): # with mask.all(), Block.putmask is a no-op, so does not downcast expected = expected.copy() expected["A"] = expected["A"].astype(object) tm.assert_frame_equal(df, expected) def test_where_dt64_2d(): dti = date_range("2016-01-01", periods=6) dta = dti._data.reshape(3, 2) other = dta - dta[0, 0] df = DataFrame(dta, columns=["A", "B"]) mask = np.asarray(df.isna()).copy() mask[:, 1] = True # setting all of one column, none of the other expected = DataFrame({"A": other[:, 0], "B": dta[:, 1]}) _check_where_equivalences(df, mask, other, expected) # setting part of one column, none of the other mask[1, 0] = True expected = DataFrame( { "A": np.array([other[0, 0], dta[1, 0], other[2, 0]], dtype=object), "B": dta[:, 1], } ) _check_where_equivalences(df, mask, other, expected) # setting nothing in either column mask[:] = True expected = df _check_where_equivalences(df, mask, other, expected) def test_where_producing_ea_cond_for_np_dtype(): # GH#44014 df = DataFrame({"a": Series([1, pd.NA, 2], dtype="Int64"), "b": [1, 2, 3]}) result = df.where(lambda x: x.apply(lambda y: y > 1, axis=1)) expected = DataFrame( {"a": Series([pd.NA, pd.NA, 2], dtype="Int64"), "b": [np.nan, 2, 3]} ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "replacement", [0.001, True, "snake", None, datetime(2022, 5, 4)] ) def test_where_int_overflow(replacement): # GH 31687 df = DataFrame([[1.0, 2e25, "nine"], [np.nan, 0.1, None]]) result = df.where(pd.notnull(df), replacement) expected = DataFrame([[1.0, 2e25, "nine"], [replacement, 0.1, replacement]]) tm.assert_frame_equal(result, expected) def test_where_inplace_no_other(): # GH#51685 df = DataFrame({"a": [1, 2], "b": ["x", "y"]}) cond = DataFrame({"a": [True, False], "b": [False, True]}) df.where(cond, inplace=True) expected = DataFrame({"a": [1, np.nan], "b": [np.nan, "y"]}) tm.assert_frame_equal(df, expected)