import re import numpy as np import pytest from pandas.errors import SettingWithCopyError from pandas import ( DataFrame, Index, IndexSlice, MultiIndex, Series, concat, ) import pandas._testing as tm from pandas.tseries.offsets import BDay @pytest.fixture def four_level_index_dataframe(): arr = np.array( [ [-0.5109, -2.3358, -0.4645, 0.05076, 0.364], [0.4473, 1.4152, 0.2834, 1.00661, 0.1744], [-0.6662, -0.5243, -0.358, 0.89145, 2.5838], ] ) index = MultiIndex( levels=[["a", "x"], ["b", "q"], [10.0032, 20.0, 30.0], [3, 4, 5]], codes=[[0, 0, 1], [0, 1, 1], [0, 1, 2], [2, 1, 0]], names=["one", "two", "three", "four"], ) return DataFrame(arr, index=index, columns=list("ABCDE")) class TestXS: def test_xs(self, float_frame, datetime_frame, using_copy_on_write): float_frame_orig = float_frame.copy() idx = float_frame.index[5] xs = float_frame.xs(idx) for item, value in xs.items(): if np.isnan(value): assert np.isnan(float_frame[item][idx]) else: assert value == float_frame[item][idx] # mixed-type xs test_data = {"A": {"1": 1, "2": 2}, "B": {"1": "1", "2": "2", "3": "3"}} frame = DataFrame(test_data) xs = frame.xs("1") assert xs.dtype == np.object_ assert xs["A"] == 1 assert xs["B"] == "1" with pytest.raises( KeyError, match=re.escape("Timestamp('1999-12-31 00:00:00')") ): datetime_frame.xs(datetime_frame.index[0] - BDay()) # xs get column series = float_frame.xs("A", axis=1) expected = float_frame["A"] tm.assert_series_equal(series, expected) # view is returned if possible series = float_frame.xs("A", axis=1) series[:] = 5 if using_copy_on_write: # but with CoW the view shouldn't propagate mutations tm.assert_series_equal(float_frame["A"], float_frame_orig["A"]) assert not (expected == 5).all() else: assert (expected == 5).all() def test_xs_corner(self): # pathological mixed-type reordering case df = DataFrame(index=[0]) df["A"] = 1.0 df["B"] = "foo" df["C"] = 2.0 df["D"] = "bar" df["E"] = 3.0 xs = df.xs(0) exp = Series([1.0, "foo", 2.0, "bar", 3.0], index=list("ABCDE"), name=0) tm.assert_series_equal(xs, exp) # no columns but Index(dtype=object) df = DataFrame(index=["a", "b", "c"]) result = df.xs("a") expected = Series([], name="a", dtype=np.float64) tm.assert_series_equal(result, expected) def test_xs_duplicates(self): df = DataFrame(np.random.randn(5, 2), index=["b", "b", "c", "b", "a"]) cross = df.xs("c") exp = df.iloc[2] tm.assert_series_equal(cross, exp) def test_xs_keep_level(self): df = DataFrame( { "day": {0: "sat", 1: "sun"}, "flavour": {0: "strawberry", 1: "strawberry"}, "sales": {0: 10, 1: 12}, "year": {0: 2008, 1: 2008}, } ).set_index(["year", "flavour", "day"]) result = df.xs("sat", level="day", drop_level=False) expected = df[:1] tm.assert_frame_equal(result, expected) result = df.xs((2008, "sat"), level=["year", "day"], drop_level=False) tm.assert_frame_equal(result, expected) def test_xs_view(self, using_array_manager, using_copy_on_write): # in 0.14 this will return a view if possible a copy otherwise, but # this is numpy dependent dm = DataFrame(np.arange(20.0).reshape(4, 5), index=range(4), columns=range(5)) df_orig = dm.copy() if using_copy_on_write: with tm.raises_chained_assignment_error(): dm.xs(2)[:] = 20 tm.assert_frame_equal(dm, df_orig) elif using_array_manager: # INFO(ArrayManager) with ArrayManager getting a row as a view is # not possible msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(SettingWithCopyError, match=msg): dm.xs(2)[:] = 20 assert not (dm.xs(2) == 20).any() else: dm.xs(2)[:] = 20 assert (dm.xs(2) == 20).all() class TestXSWithMultiIndex: def test_xs_doc_example(self): # TODO: more descriptive name # based on example in advanced.rst arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] tuples = list(zip(*arrays)) index = MultiIndex.from_tuples(tuples, names=["first", "second"]) df = DataFrame(np.random.randn(3, 8), index=["A", "B", "C"], columns=index) result = df.xs(("one", "bar"), level=("second", "first"), axis=1) expected = df.iloc[:, [0]] tm.assert_frame_equal(result, expected) def test_xs_integer_key(self): # see GH#2107 dates = range(20111201, 20111205) ids = list("abcde") index = MultiIndex.from_product([dates, ids], names=["date", "secid"]) df = DataFrame(np.random.randn(len(index), 3), index, ["X", "Y", "Z"]) result = df.xs(20111201, level="date") expected = df.loc[20111201, :] tm.assert_frame_equal(result, expected) def test_xs_level(self, multiindex_dataframe_random_data): df = multiindex_dataframe_random_data result = df.xs("two", level="second") expected = df[df.index.get_level_values(1) == "two"] expected.index = Index(["foo", "bar", "baz", "qux"], name="first") tm.assert_frame_equal(result, expected) def test_xs_level_eq_2(self): arr = np.random.randn(3, 5) index = MultiIndex( levels=[["a", "p", "x"], ["b", "q", "y"], ["c", "r", "z"]], codes=[[2, 0, 1], [2, 0, 1], [2, 0, 1]], ) df = DataFrame(arr, index=index) expected = DataFrame(arr[1:2], index=[["a"], ["b"]]) result = df.xs("c", level=2) tm.assert_frame_equal(result, expected) def test_xs_setting_with_copy_error( self, multiindex_dataframe_random_data, using_copy_on_write ): # this is a copy in 0.14 df = multiindex_dataframe_random_data df_orig = df.copy() result = df.xs("two", level="second") if using_copy_on_write: result[:] = 10 else: # setting this will give a SettingWithCopyError # as we are trying to write a view msg = "A value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(SettingWithCopyError, match=msg): result[:] = 10 tm.assert_frame_equal(df, df_orig) def test_xs_setting_with_copy_error_multiple( self, four_level_index_dataframe, using_copy_on_write ): # this is a copy in 0.14 df = four_level_index_dataframe df_orig = df.copy() result = df.xs(("a", 4), level=["one", "four"]) if using_copy_on_write: result[:] = 10 else: # setting this will give a SettingWithCopyError # as we are trying to write a view msg = "A value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(SettingWithCopyError, match=msg): result[:] = 10 tm.assert_frame_equal(df, df_orig) @pytest.mark.parametrize("key, level", [("one", "second"), (["one"], ["second"])]) def test_xs_with_duplicates(self, key, level, multiindex_dataframe_random_data): # see GH#13719 frame = multiindex_dataframe_random_data df = concat([frame] * 2) assert df.index.is_unique is False expected = concat([frame.xs("one", level="second")] * 2) if isinstance(key, list): result = df.xs(tuple(key), level=level) else: result = df.xs(key, level=level) tm.assert_frame_equal(result, expected) def test_xs_missing_values_in_index(self): # see GH#6574 # missing values in returned index should be preserved acc = [ ("a", "abcde", 1), ("b", "bbcde", 2), ("y", "yzcde", 25), ("z", "xbcde", 24), ("z", None, 26), ("z", "zbcde", 25), ("z", "ybcde", 26), ] df = DataFrame(acc, columns=["a1", "a2", "cnt"]).set_index(["a1", "a2"]) expected = DataFrame( {"cnt": [24, 26, 25, 26]}, index=Index(["xbcde", np.nan, "zbcde", "ybcde"], name="a2"), ) result = df.xs("z", level="a1") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "key, level, exp_arr, exp_index", [ ("a", "lvl0", lambda x: x[:, 0:2], Index(["bar", "foo"], name="lvl1")), ("foo", "lvl1", lambda x: x[:, 1:2], Index(["a"], name="lvl0")), ], ) def test_xs_named_levels_axis_eq_1(self, key, level, exp_arr, exp_index): # see GH#2903 arr = np.random.randn(4, 4) index = MultiIndex( levels=[["a", "b"], ["bar", "foo", "hello", "world"]], codes=[[0, 0, 1, 1], [0, 1, 2, 3]], names=["lvl0", "lvl1"], ) df = DataFrame(arr, columns=index) result = df.xs(key, level=level, axis=1) expected = DataFrame(exp_arr(arr), columns=exp_index) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "indexer", [ lambda df: df.xs(("a", 4), level=["one", "four"]), lambda df: df.xs("a").xs(4, level="four"), ], ) def test_xs_level_multiple(self, indexer, four_level_index_dataframe): df = four_level_index_dataframe expected_values = [[0.4473, 1.4152, 0.2834, 1.00661, 0.1744]] expected_index = MultiIndex( levels=[["q"], [20.0]], codes=[[0], [0]], names=["two", "three"] ) expected = DataFrame( expected_values, index=expected_index, columns=list("ABCDE") ) result = indexer(df) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "indexer", [lambda df: df.xs("a", level=0), lambda df: df.xs("a")] ) def test_xs_level0(self, indexer, four_level_index_dataframe): df = four_level_index_dataframe expected_values = [ [-0.5109, -2.3358, -0.4645, 0.05076, 0.364], [0.4473, 1.4152, 0.2834, 1.00661, 0.1744], ] expected_index = MultiIndex( levels=[["b", "q"], [10.0032, 20.0], [4, 5]], codes=[[0, 1], [0, 1], [1, 0]], names=["two", "three", "four"], ) expected = DataFrame( expected_values, index=expected_index, columns=list("ABCDE") ) result = indexer(df) tm.assert_frame_equal(result, expected) def test_xs_values(self, multiindex_dataframe_random_data): df = multiindex_dataframe_random_data result = df.xs(("bar", "two")).values expected = df.values[4] tm.assert_almost_equal(result, expected) def test_xs_loc_equality(self, multiindex_dataframe_random_data): df = multiindex_dataframe_random_data result = df.xs(("bar", "two")) expected = df.loc[("bar", "two")] tm.assert_series_equal(result, expected) def test_xs_IndexSlice_argument_not_implemented(self, frame_or_series): # GH#35301 index = MultiIndex( levels=[[("foo", "bar", 0), ("foo", "baz", 0), ("foo", "qux", 0)], [0, 1]], codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]], ) obj = DataFrame(np.random.randn(6, 4), index=index) if frame_or_series is Series: obj = obj[0] expected = obj.iloc[-2:].droplevel(0) result = obj.xs(IndexSlice[("foo", "qux", 0), :]) tm.assert_equal(result, expected) result = obj.loc[IndexSlice[("foo", "qux", 0), :]] tm.assert_equal(result, expected) def test_xs_levels_raises(self, frame_or_series): obj = DataFrame({"A": [1, 2, 3]}) if frame_or_series is Series: obj = obj["A"] msg = "Index must be a MultiIndex" with pytest.raises(TypeError, match=msg): obj.xs(0, level="as") def test_xs_multiindex_droplevel_false(self): # GH#19056 mi = MultiIndex.from_tuples( [("a", "x"), ("a", "y"), ("b", "x")], names=["level1", "level2"] ) df = DataFrame([[1, 2, 3]], columns=mi) result = df.xs("a", axis=1, drop_level=False) expected = DataFrame( [[1, 2]], columns=MultiIndex.from_tuples( [("a", "x"), ("a", "y")], names=["level1", "level2"] ), ) tm.assert_frame_equal(result, expected) def test_xs_droplevel_false(self): # GH#19056 df = DataFrame([[1, 2, 3]], columns=Index(["a", "b", "c"])) result = df.xs("a", axis=1, drop_level=False) expected = DataFrame({"a": [1]}) tm.assert_frame_equal(result, expected) def test_xs_droplevel_false_view(self, using_array_manager, using_copy_on_write): # GH#37832 df = DataFrame([[1, 2, 3]], columns=Index(["a", "b", "c"])) result = df.xs("a", axis=1, drop_level=False) # check that result still views the same data as df assert np.shares_memory(result.iloc[:, 0]._values, df.iloc[:, 0]._values) df.iloc[0, 0] = 2 if using_copy_on_write: # with copy on write the subset is never modified expected = DataFrame({"a": [1]}) else: # modifying original df also modifies result when having a single block expected = DataFrame({"a": [2]}) tm.assert_frame_equal(result, expected) # with mixed dataframe, modifying the parent doesn't modify result # TODO the "split" path behaves differently here as with single block df = DataFrame([[1, 2.5, "a"]], columns=Index(["a", "b", "c"])) result = df.xs("a", axis=1, drop_level=False) df.iloc[0, 0] = 2 if using_copy_on_write: # with copy on write the subset is never modified expected = DataFrame({"a": [1]}) elif using_array_manager: # Here the behavior is consistent expected = DataFrame({"a": [2]}) else: # FIXME: iloc does not update the array inplace using # "split" path expected = DataFrame({"a": [1]}) tm.assert_frame_equal(result, expected) def test_xs_list_indexer_droplevel_false(self): # GH#41760 mi = MultiIndex.from_tuples([("x", "m", "a"), ("x", "n", "b"), ("y", "o", "c")]) df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=mi) with pytest.raises(KeyError, match="y"): df.xs(("x", "y"), drop_level=False, axis=1)