import numpy as np import pytest from pandas.compat.pyarrow import pa_version_under7p0 from pandas.core.dtypes.missing import na_value_for_dtype import pandas as pd import pandas._testing as tm from pandas.tests.groupby import get_groupby_method_args @pytest.mark.parametrize( "dropna, tuples, outputs", [ ( True, [["A", "B"], ["B", "A"]], {"c": [13.0, 123.23], "d": [13.0, 123.0], "e": [13.0, 1.0]}, ), ( False, [["A", "B"], ["A", np.nan], ["B", "A"]], { "c": [13.0, 12.3, 123.23], "d": [13.0, 233.0, 123.0], "e": [13.0, 12.0, 1.0], }, ), ], ) def test_groupby_dropna_multi_index_dataframe_nan_in_one_group( dropna, tuples, outputs, nulls_fixture ): # GH 3729 this is to test that NA is in one group df_list = [ ["A", "B", 12, 12, 12], ["A", nulls_fixture, 12.3, 233.0, 12], ["B", "A", 123.23, 123, 1], ["A", "B", 1, 1, 1.0], ] df = pd.DataFrame(df_list, columns=["a", "b", "c", "d", "e"]) grouped = df.groupby(["a", "b"], dropna=dropna).sum() mi = pd.MultiIndex.from_tuples(tuples, names=list("ab")) # Since right now, by default MI will drop NA from levels when we create MI # via `from_*`, so we need to add NA for level manually afterwards. if not dropna: mi = mi.set_levels(["A", "B", np.nan], level="b") expected = pd.DataFrame(outputs, index=mi) tm.assert_frame_equal(grouped, expected) @pytest.mark.parametrize( "dropna, tuples, outputs", [ ( True, [["A", "B"], ["B", "A"]], {"c": [12.0, 123.23], "d": [12.0, 123.0], "e": [12.0, 1.0]}, ), ( False, [["A", "B"], ["A", np.nan], ["B", "A"], [np.nan, "B"]], { "c": [12.0, 13.3, 123.23, 1.0], "d": [12.0, 234.0, 123.0, 1.0], "e": [12.0, 13.0, 1.0, 1.0], }, ), ], ) def test_groupby_dropna_multi_index_dataframe_nan_in_two_groups( dropna, tuples, outputs, nulls_fixture, nulls_fixture2 ): # GH 3729 this is to test that NA in different groups with different representations df_list = [ ["A", "B", 12, 12, 12], ["A", nulls_fixture, 12.3, 233.0, 12], ["B", "A", 123.23, 123, 1], [nulls_fixture2, "B", 1, 1, 1.0], ["A", nulls_fixture2, 1, 1, 1.0], ] df = pd.DataFrame(df_list, columns=["a", "b", "c", "d", "e"]) grouped = df.groupby(["a", "b"], dropna=dropna).sum() mi = pd.MultiIndex.from_tuples(tuples, names=list("ab")) # Since right now, by default MI will drop NA from levels when we create MI # via `from_*`, so we need to add NA for level manually afterwards. if not dropna: mi = mi.set_levels([["A", "B", np.nan], ["A", "B", np.nan]]) expected = pd.DataFrame(outputs, index=mi) tm.assert_frame_equal(grouped, expected) @pytest.mark.parametrize( "dropna, idx, outputs", [ (True, ["A", "B"], {"b": [123.23, 13.0], "c": [123.0, 13.0], "d": [1.0, 13.0]}), ( False, ["A", "B", np.nan], { "b": [123.23, 13.0, 12.3], "c": [123.0, 13.0, 233.0], "d": [1.0, 13.0, 12.0], }, ), ], ) def test_groupby_dropna_normal_index_dataframe(dropna, idx, outputs): # GH 3729 df_list = [ ["B", 12, 12, 12], [None, 12.3, 233.0, 12], ["A", 123.23, 123, 1], ["B", 1, 1, 1.0], ] df = pd.DataFrame(df_list, columns=["a", "b", "c", "d"]) grouped = df.groupby("a", dropna=dropna).sum() expected = pd.DataFrame(outputs, index=pd.Index(idx, dtype="object", name="a")) tm.assert_frame_equal(grouped, expected) @pytest.mark.parametrize( "dropna, idx, expected", [ (True, ["a", "a", "b", np.nan], pd.Series([3, 3], index=["a", "b"])), ( False, ["a", "a", "b", np.nan], pd.Series([3, 3, 3], index=["a", "b", np.nan]), ), ], ) def test_groupby_dropna_series_level(dropna, idx, expected): ser = pd.Series([1, 2, 3, 3], index=idx) result = ser.groupby(level=0, dropna=dropna).sum() tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "dropna, expected", [ (True, pd.Series([210.0, 350.0], index=["a", "b"], name="Max Speed")), ( False, pd.Series([210.0, 350.0, 20.0], index=["a", "b", np.nan], name="Max Speed"), ), ], ) def test_groupby_dropna_series_by(dropna, expected): ser = pd.Series( [390.0, 350.0, 30.0, 20.0], index=["Falcon", "Falcon", "Parrot", "Parrot"], name="Max Speed", ) result = ser.groupby(["a", "b", "a", np.nan], dropna=dropna).mean() tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dropna", (False, True)) def test_grouper_dropna_propagation(dropna): # GH 36604 df = pd.DataFrame({"A": [0, 0, 1, None], "B": [1, 2, 3, None]}) gb = df.groupby("A", dropna=dropna) assert gb.grouper.dropna == dropna @pytest.mark.parametrize( "index", [ pd.RangeIndex(0, 4), list("abcd"), pd.MultiIndex.from_product([(1, 2), ("R", "B")], names=["num", "col"]), ], ) def test_groupby_dataframe_slice_then_transform(dropna, index): # GH35014 & GH35612 expected_data = {"B": [2, 2, 1, np.nan if dropna else 1]} df = pd.DataFrame({"A": [0, 0, 1, None], "B": [1, 2, 3, None]}, index=index) gb = df.groupby("A", dropna=dropna) result = gb.transform(len) expected = pd.DataFrame(expected_data, index=index) tm.assert_frame_equal(result, expected) result = gb[["B"]].transform(len) expected = pd.DataFrame(expected_data, index=index) tm.assert_frame_equal(result, expected) result = gb["B"].transform(len) expected = pd.Series(expected_data["B"], index=index, name="B") tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "dropna, tuples, outputs", [ ( True, [["A", "B"], ["B", "A"]], {"c": [13.0, 123.23], "d": [12.0, 123.0], "e": [1.0, 1.0]}, ), ( False, [["A", "B"], ["A", np.nan], ["B", "A"]], { "c": [13.0, 12.3, 123.23], "d": [12.0, 233.0, 123.0], "e": [1.0, 12.0, 1.0], }, ), ], ) def test_groupby_dropna_multi_index_dataframe_agg(dropna, tuples, outputs): # GH 3729 df_list = [ ["A", "B", 12, 12, 12], ["A", None, 12.3, 233.0, 12], ["B", "A", 123.23, 123, 1], ["A", "B", 1, 1, 1.0], ] df = pd.DataFrame(df_list, columns=["a", "b", "c", "d", "e"]) agg_dict = {"c": sum, "d": max, "e": "min"} grouped = df.groupby(["a", "b"], dropna=dropna).agg(agg_dict) mi = pd.MultiIndex.from_tuples(tuples, names=list("ab")) # Since right now, by default MI will drop NA from levels when we create MI # via `from_*`, so we need to add NA for level manually afterwards. if not dropna: mi = mi.set_levels(["A", "B", np.nan], level="b") expected = pd.DataFrame(outputs, index=mi) tm.assert_frame_equal(grouped, expected) @pytest.mark.arm_slow @pytest.mark.parametrize( "datetime1, datetime2", [ (pd.Timestamp("2020-01-01"), pd.Timestamp("2020-02-01")), (pd.Timedelta("-2 days"), pd.Timedelta("-1 days")), (pd.Period("2020-01-01"), pd.Period("2020-02-01")), ], ) @pytest.mark.parametrize("dropna, values", [(True, [12, 3]), (False, [12, 3, 6])]) def test_groupby_dropna_datetime_like_data( dropna, values, datetime1, datetime2, unique_nulls_fixture, unique_nulls_fixture2 ): # 3729 df = pd.DataFrame( { "values": [1, 2, 3, 4, 5, 6], "dt": [ datetime1, unique_nulls_fixture, datetime2, unique_nulls_fixture2, datetime1, datetime1, ], } ) if dropna: indexes = [datetime1, datetime2] else: indexes = [datetime1, datetime2, np.nan] grouped = df.groupby("dt", dropna=dropna).agg({"values": sum}) expected = pd.DataFrame({"values": values}, index=pd.Index(indexes, name="dt")) tm.assert_frame_equal(grouped, expected) @pytest.mark.parametrize( "dropna, data, selected_data, levels", [ pytest.param( False, {"groups": ["a", "a", "b", np.nan], "values": [10, 10, 20, 30]}, {"values": [0, 1, 0, 0]}, ["a", "b", np.nan], id="dropna_false_has_nan", ), pytest.param( True, {"groups": ["a", "a", "b", np.nan], "values": [10, 10, 20, 30]}, {"values": [0, 1, 0]}, None, id="dropna_true_has_nan", ), pytest.param( # no nan in "groups"; dropna=True|False should be same. False, {"groups": ["a", "a", "b", "c"], "values": [10, 10, 20, 30]}, {"values": [0, 1, 0, 0]}, None, id="dropna_false_no_nan", ), pytest.param( # no nan in "groups"; dropna=True|False should be same. True, {"groups": ["a", "a", "b", "c"], "values": [10, 10, 20, 30]}, {"values": [0, 1, 0, 0]}, None, id="dropna_true_no_nan", ), ], ) def test_groupby_apply_with_dropna_for_multi_index(dropna, data, selected_data, levels): # GH 35889 df = pd.DataFrame(data) gb = df.groupby("groups", dropna=dropna) result = gb.apply(lambda grp: pd.DataFrame({"values": range(len(grp))})) mi_tuples = tuple(zip(data["groups"], selected_data["values"])) mi = pd.MultiIndex.from_tuples(mi_tuples, names=["groups", None]) # Since right now, by default MI will drop NA from levels when we create MI # via `from_*`, so we need to add NA for level manually afterwards. if not dropna and levels: mi = mi.set_levels(levels, level="groups") expected = pd.DataFrame(selected_data, index=mi) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("input_index", [None, ["a"], ["a", "b"]]) @pytest.mark.parametrize("keys", [["a"], ["a", "b"]]) @pytest.mark.parametrize("series", [True, False]) def test_groupby_dropna_with_multiindex_input(input_index, keys, series): # GH#46783 obj = pd.DataFrame( { "a": [1, np.nan], "b": [1, 1], "c": [2, 3], } ) expected = obj.set_index(keys) if series: expected = expected["c"] elif input_index == ["a", "b"] and keys == ["a"]: # Column b should not be aggregated expected = expected[["c"]] if input_index is not None: obj = obj.set_index(input_index) gb = obj.groupby(keys, dropna=False) if series: gb = gb["c"] result = gb.sum() tm.assert_equal(result, expected) def test_groupby_nan_included(): # GH 35646 data = {"group": ["g1", np.nan, "g1", "g2", np.nan], "B": [0, 1, 2, 3, 4]} df = pd.DataFrame(data) grouped = df.groupby("group", dropna=False) result = grouped.indices dtype = np.intp expected = { "g1": np.array([0, 2], dtype=dtype), "g2": np.array([3], dtype=dtype), np.nan: np.array([1, 4], dtype=dtype), } for result_values, expected_values in zip(result.values(), expected.values()): tm.assert_numpy_array_equal(result_values, expected_values) assert np.isnan(list(result.keys())[2]) assert list(result.keys())[0:2] == ["g1", "g2"] def test_groupby_drop_nan_with_multi_index(): # GH 39895 df = pd.DataFrame([[np.nan, 0, 1]], columns=["a", "b", "c"]) df = df.set_index(["a", "b"]) result = df.groupby(["a", "b"], dropna=False).first() expected = df tm.assert_frame_equal(result, expected) # sequence_index enumerates all strings made up of x, y, z of length 4 @pytest.mark.parametrize("sequence_index", range(3**4)) @pytest.mark.parametrize( "dtype", [ None, "UInt8", "Int8", "UInt16", "Int16", "UInt32", "Int32", "UInt64", "Int64", "Float32", "Int64", "Float64", "category", "string", pytest.param( "string[pyarrow]", marks=pytest.mark.skipif( pa_version_under7p0, reason="pyarrow is not installed" ), ), "datetime64[ns]", "period[d]", "Sparse[float]", ], ) @pytest.mark.parametrize("test_series", [True, False]) def test_no_sort_keep_na(sequence_index, dtype, test_series, as_index): # GH#46584, GH#48794 # Convert sequence_index into a string sequence, e.g. 5 becomes "xxyz" # This sequence is used for the grouper. sequence = "".join( [{0: "x", 1: "y", 2: "z"}[sequence_index // (3**k) % 3] for k in range(4)] ) # Unique values to use for grouper, depends on dtype if dtype in ("string", "string[pyarrow]"): uniques = {"x": "x", "y": "y", "z": pd.NA} elif dtype in ("datetime64[ns]", "period[d]"): uniques = {"x": "2016-01-01", "y": "2017-01-01", "z": pd.NA} else: uniques = {"x": 1, "y": 2, "z": np.nan} df = pd.DataFrame( { "key": pd.Series([uniques[label] for label in sequence], dtype=dtype), "a": [0, 1, 2, 3], } ) gb = df.groupby("key", dropna=False, sort=False, as_index=as_index) if test_series: gb = gb["a"] result = gb.sum() # Manually compute the groupby sum, use the labels "x", "y", and "z" to avoid # issues with hashing np.nan summed = {} for idx, label in enumerate(sequence): summed[label] = summed.get(label, 0) + idx if dtype == "category": index = pd.CategoricalIndex( [uniques[e] for e in summed], df["key"].cat.categories, name="key", ) elif isinstance(dtype, str) and dtype.startswith("Sparse"): index = pd.Index( pd.array([uniques[label] for label in summed], dtype=dtype), name="key" ) else: index = pd.Index([uniques[label] for label in summed], dtype=dtype, name="key") expected = pd.Series(summed.values(), index=index, name="a", dtype=None) if not test_series: expected = expected.to_frame() if not as_index: expected = expected.reset_index() if dtype is not None and dtype.startswith("Sparse"): expected["key"] = expected["key"].astype(dtype) tm.assert_equal(result, expected) @pytest.mark.parametrize("test_series", [True, False]) @pytest.mark.parametrize("dtype", [object, None]) def test_null_is_null_for_dtype( sort, dtype, nulls_fixture, nulls_fixture2, test_series ): # GH#48506 - groups should always result in using the null for the dtype df = pd.DataFrame({"a": [1, 2]}) groups = pd.Series([nulls_fixture, nulls_fixture2], dtype=dtype) obj = df["a"] if test_series else df gb = obj.groupby(groups, dropna=False, sort=sort) result = gb.sum() index = pd.Index([na_value_for_dtype(groups.dtype)]) expected = pd.DataFrame({"a": [3]}, index=index) if test_series: tm.assert_series_equal(result, expected["a"]) else: tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("index_kind", ["range", "single", "multi"]) def test_categorical_reducers( request, reduction_func, observed, sort, as_index, index_kind ): # GH#36327 if ( reduction_func in ("idxmin", "idxmax") and not observed and index_kind != "multi" ): msg = "GH#10694 - idxmin/max broken for categorical with observed=False" request.node.add_marker(pytest.mark.xfail(reason=msg)) # Ensure there is at least one null value by appending to the end values = np.append(np.random.choice([1, 2, None], size=19), None) df = pd.DataFrame( {"x": pd.Categorical(values, categories=[1, 2, 3]), "y": range(20)} ) # Strategy: Compare to dropna=True by filling null values with a new code df_filled = df.copy() df_filled["x"] = pd.Categorical(values, categories=[1, 2, 3, 4]).fillna(4) if index_kind == "range": keys = ["x"] elif index_kind == "single": keys = ["x"] df = df.set_index("x") df_filled = df_filled.set_index("x") else: keys = ["x", "x2"] df["x2"] = df["x"] df = df.set_index(["x", "x2"]) df_filled["x2"] = df_filled["x"] df_filled = df_filled.set_index(["x", "x2"]) args = get_groupby_method_args(reduction_func, df) args_filled = get_groupby_method_args(reduction_func, df_filled) if reduction_func == "corrwith" and index_kind == "range": # Don't include the grouping columns so we can call reset_index args = (args[0].drop(columns=keys),) args_filled = (args_filled[0].drop(columns=keys),) gb_filled = df_filled.groupby(keys, observed=observed, sort=sort, as_index=True) expected = getattr(gb_filled, reduction_func)(*args_filled).reset_index() expected["x"] = expected["x"].replace(4, None) if index_kind == "multi": expected["x2"] = expected["x2"].replace(4, None) if as_index: if index_kind == "multi": expected = expected.set_index(["x", "x2"]) else: expected = expected.set_index("x") else: if index_kind != "range" and reduction_func != "size": # size, unlike other methods, has the desired behavior in GH#49519 expected = expected.drop(columns="x") if index_kind == "multi": expected = expected.drop(columns="x2") if reduction_func in ("idxmax", "idxmin") and index_kind != "range": # expected was computed with a RangeIndex; need to translate to index values values = expected["y"].values.tolist() if index_kind == "single": values = [np.nan if e == 4 else e for e in values] else: values = [(np.nan, np.nan) if e == (4, 4) else e for e in values] expected["y"] = values if reduction_func == "size": # size, unlike other methods, has the desired behavior in GH#49519 expected = expected.rename(columns={0: "size"}) if as_index: expected = expected["size"].rename(None) gb_keepna = df.groupby( keys, dropna=False, observed=observed, sort=sort, as_index=as_index ) result = getattr(gb_keepna, reduction_func)(*args) # size will return a Series, others are DataFrame tm.assert_equal(result, expected) def test_categorical_transformers( request, transformation_func, observed, sort, as_index ): # GH#36327 if transformation_func == "fillna": msg = "GH#49651 fillna may incorrectly reorders results when dropna=False" request.node.add_marker(pytest.mark.xfail(reason=msg, strict=False)) values = np.append(np.random.choice([1, 2, None], size=19), None) df = pd.DataFrame( {"x": pd.Categorical(values, categories=[1, 2, 3]), "y": range(20)} ) args = get_groupby_method_args(transformation_func, df) # Compute result for null group null_group_values = df[df["x"].isnull()]["y"] if transformation_func == "cumcount": null_group_data = list(range(len(null_group_values))) elif transformation_func == "ngroup": if sort: if observed: na_group = df["x"].nunique(dropna=False) - 1 else: # TODO: Should this be 3? na_group = df["x"].nunique(dropna=False) - 1 else: na_group = df.iloc[: null_group_values.index[0]]["x"].nunique() null_group_data = len(null_group_values) * [na_group] else: null_group_data = getattr(null_group_values, transformation_func)(*args) null_group_result = pd.DataFrame({"y": null_group_data}) gb_keepna = df.groupby( "x", dropna=False, observed=observed, sort=sort, as_index=as_index ) gb_dropna = df.groupby("x", dropna=True, observed=observed, sort=sort) result = getattr(gb_keepna, transformation_func)(*args) expected = getattr(gb_dropna, transformation_func)(*args) for iloc, value in zip( df[df["x"].isnull()].index.tolist(), null_group_result.values.ravel() ): if expected.ndim == 1: expected.iloc[iloc] = value else: expected.iloc[iloc, 0] = value if transformation_func == "ngroup": expected[df["x"].notnull() & expected.ge(na_group)] += 1 if transformation_func not in ("rank", "diff", "pct_change", "shift"): expected = expected.astype("int64") tm.assert_equal(result, expected) @pytest.mark.parametrize("method", ["head", "tail"]) def test_categorical_head_tail(method, observed, sort, as_index): # GH#36327 values = np.random.choice([1, 2, None], 30) df = pd.DataFrame( {"x": pd.Categorical(values, categories=[1, 2, 3]), "y": range(len(values))} ) gb = df.groupby("x", dropna=False, observed=observed, sort=sort, as_index=as_index) result = getattr(gb, method)() if method == "tail": values = values[::-1] # Take the top 5 values from each group mask = ( ((values == 1) & ((values == 1).cumsum() <= 5)) | ((values == 2) & ((values == 2).cumsum() <= 5)) # flake8 doesn't like the vectorized check for None, thinks we should use `is` | ((values == None) & ((values == None).cumsum() <= 5)) # noqa: E711 ) if method == "tail": mask = mask[::-1] expected = df[mask] tm.assert_frame_equal(result, expected) def test_categorical_agg(): # GH#36327 values = np.random.choice([1, 2, None], 30) df = pd.DataFrame( {"x": pd.Categorical(values, categories=[1, 2, 3]), "y": range(len(values))} ) gb = df.groupby("x", dropna=False) result = gb.agg(lambda x: x.sum()) expected = gb.sum() tm.assert_frame_equal(result, expected) def test_categorical_transform(): # GH#36327 values = np.random.choice([1, 2, None], 30) df = pd.DataFrame( {"x": pd.Categorical(values, categories=[1, 2, 3]), "y": range(len(values))} ) gb = df.groupby("x", dropna=False) result = gb.transform(lambda x: x.sum()) expected = gb.transform("sum") tm.assert_frame_equal(result, expected)