import numpy as np import pytest import pandas as pd from pandas import ( Index, MultiIndex, date_range, period_range, ) import pandas._testing as tm def test_infer_objects(idx): with pytest.raises(NotImplementedError, match="to_frame"): idx.infer_objects() def test_shift(idx): # GH8083 test the base class for shift msg = ( "This method is only implemented for DatetimeIndex, PeriodIndex and " "TimedeltaIndex; Got type MultiIndex" ) with pytest.raises(NotImplementedError, match=msg): idx.shift(1) with pytest.raises(NotImplementedError, match=msg): idx.shift(1, 2) def test_groupby(idx): groups = idx.groupby(np.array([1, 1, 1, 2, 2, 2])) labels = idx.tolist() exp = {1: labels[:3], 2: labels[3:]} tm.assert_dict_equal(groups, exp) # GH5620 groups = idx.groupby(idx) exp = {key: [key] for key in idx} tm.assert_dict_equal(groups, exp) def test_truncate_multiindex(): # GH 34564 for MultiIndex level names check major_axis = Index(list(range(4))) minor_axis = Index(list(range(2))) major_codes = np.array([0, 0, 1, 2, 3, 3]) minor_codes = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex( levels=[major_axis, minor_axis], codes=[major_codes, minor_codes], names=["L1", "L2"], ) result = index.truncate(before=1) assert "foo" not in result.levels[0] assert 1 in result.levels[0] assert index.names == result.names result = index.truncate(after=1) assert 2 not in result.levels[0] assert 1 in result.levels[0] assert index.names == result.names result = index.truncate(before=1, after=2) assert len(result.levels[0]) == 2 assert index.names == result.names msg = "after < before" with pytest.raises(ValueError, match=msg): index.truncate(3, 1) # TODO: reshape def test_reorder_levels(idx): # this blows up with pytest.raises(IndexError, match="^Too many levels"): idx.reorder_levels([2, 1, 0]) def test_numpy_repeat(): reps = 2 numbers = [1, 2, 3] names = np.array(["foo", "bar"]) m = MultiIndex.from_product([numbers, names], names=names) expected = MultiIndex.from_product([numbers, names.repeat(reps)], names=names) tm.assert_index_equal(np.repeat(m, reps), expected) msg = "the 'axis' parameter is not supported" with pytest.raises(ValueError, match=msg): np.repeat(m, reps, axis=1) def test_append_mixed_dtypes(): # GH 13660 dti = date_range("2011-01-01", freq="M", periods=3) dti_tz = date_range("2011-01-01", freq="M", periods=3, tz="US/Eastern") pi = period_range("2011-01", freq="M", periods=3) mi = MultiIndex.from_arrays( [[1, 2, 3], [1.1, np.nan, 3.3], ["a", "b", "c"], dti, dti_tz, pi] ) assert mi.nlevels == 6 res = mi.append(mi) exp = MultiIndex.from_arrays( [ [1, 2, 3, 1, 2, 3], [1.1, np.nan, 3.3, 1.1, np.nan, 3.3], ["a", "b", "c", "a", "b", "c"], dti.append(dti), dti_tz.append(dti_tz), pi.append(pi), ] ) tm.assert_index_equal(res, exp) other = MultiIndex.from_arrays( [ ["x", "y", "z"], ["x", "y", "z"], ["x", "y", "z"], ["x", "y", "z"], ["x", "y", "z"], ["x", "y", "z"], ] ) res = mi.append(other) exp = MultiIndex.from_arrays( [ [1, 2, 3, "x", "y", "z"], [1.1, np.nan, 3.3, "x", "y", "z"], ["a", "b", "c", "x", "y", "z"], dti.append(Index(["x", "y", "z"])), dti_tz.append(Index(["x", "y", "z"])), pi.append(Index(["x", "y", "z"])), ] ) tm.assert_index_equal(res, exp) def test_iter(idx): result = list(idx) expected = [ ("foo", "one"), ("foo", "two"), ("bar", "one"), ("baz", "two"), ("qux", "one"), ("qux", "two"), ] assert result == expected def test_sub(idx): first = idx # - now raises (previously was set op difference) msg = "cannot perform __sub__ with this index type: MultiIndex" with pytest.raises(TypeError, match=msg): first - idx[-3:] with pytest.raises(TypeError, match=msg): idx[-3:] - first with pytest.raises(TypeError, match=msg): idx[-3:] - first.tolist() msg = "cannot perform __rsub__ with this index type: MultiIndex" with pytest.raises(TypeError, match=msg): first.tolist() - idx[-3:] def test_map(idx): # callable index = idx result = index.map(lambda x: x) tm.assert_index_equal(result, index) @pytest.mark.parametrize( "mapper", [ lambda values, idx: {i: e for e, i in zip(values, idx)}, lambda values, idx: pd.Series(values, idx), ], ) def test_map_dictlike(idx, mapper): identity = mapper(idx.values, idx) # we don't infer to uint64 dtype for a dict if idx.dtype == np.uint64 and isinstance(identity, dict): expected = idx.astype("int64") else: expected = idx result = idx.map(identity) tm.assert_index_equal(result, expected) # empty mappable expected = Index([np.nan] * len(idx)) result = idx.map(mapper(expected, idx)) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "func", [ np.exp, np.exp2, np.expm1, np.log, np.log2, np.log10, np.log1p, np.sqrt, np.sin, np.cos, np.tan, np.arcsin, np.arccos, np.arctan, np.sinh, np.cosh, np.tanh, np.arcsinh, np.arccosh, np.arctanh, np.deg2rad, np.rad2deg, ], ids=lambda func: func.__name__, ) def test_numpy_ufuncs(idx, func): # test ufuncs of numpy. see: # https://numpy.org/doc/stable/reference/ufuncs.html expected_exception = TypeError msg = ( "loop of ufunc does not support argument 0 of type tuple which " f"has no callable {func.__name__} method" ) with pytest.raises(expected_exception, match=msg): func(idx) @pytest.mark.parametrize( "func", [np.isfinite, np.isinf, np.isnan, np.signbit], ids=lambda func: func.__name__, ) def test_numpy_type_funcs(idx, func): msg = ( f"ufunc '{func.__name__}' not supported for the input types, and the inputs " "could not be safely coerced to any supported types according to " "the casting rule ''safe''" ) with pytest.raises(TypeError, match=msg): func(idx)