""" Tests parsers ability to read and parse non-local files and hence require a network connection to be read. """ from io import ( BytesIO, StringIO, ) import logging import numpy as np import pytest from pandas.compat import is_ci_environment import pandas.util._test_decorators as td from pandas import DataFrame import pandas._testing as tm from pandas.tests.io.test_compression import _compression_to_extension from pandas.io.feather_format import read_feather from pandas.io.parsers import read_csv @pytest.mark.network @tm.network( url=( "https://github.com/pandas-dev/pandas/raw/main/" "pandas/tests/io/parser/data/salaries.csv" ), check_before_test=True, ) @pytest.mark.parametrize("mode", ["explicit", "infer"]) @pytest.mark.parametrize("engine", ["python", "c"]) def test_compressed_urls(salaries_table, mode, engine, compression_only): # test reading compressed urls with various engines and # extension inference extension = _compression_to_extension[compression_only] base_url = ( "https://github.com/pandas-dev/pandas/raw/main/" "pandas/tests/io/parser/data/salaries.csv" ) url = base_url + extension if mode != "explicit": compression_only = mode url_table = read_csv(url, sep="\t", compression=compression_only, engine=engine) tm.assert_frame_equal(url_table, salaries_table) @pytest.mark.network @tm.network( url=( "https://raw.githubusercontent.com/pandas-dev/pandas/main/" "pandas/tests/io/parser/data/unicode_series.csv" ), check_before_test=True, ) def test_url_encoding_csv(): """ read_csv should honor the requested encoding for URLs. GH 10424 """ path = ( "https://raw.githubusercontent.com/pandas-dev/pandas/main/" + "pandas/tests/io/parser/data/unicode_series.csv" ) df = read_csv(path, encoding="latin-1", header=None) assert df.loc[15, 1] == "Á köldum klaka (Cold Fever) (1994)" @pytest.fixture def tips_df(datapath): """DataFrame with the tips dataset.""" return read_csv(datapath("io", "data", "csv", "tips.csv")) @pytest.mark.single_cpu @pytest.mark.usefixtures("s3_resource") @pytest.mark.xfail( reason="CI race condition GH 45433, GH 44584", raises=FileNotFoundError, strict=False, ) @td.skip_if_not_us_locale() class TestS3: @td.skip_if_no("s3fs") def test_parse_public_s3_bucket(self, tips_df, s3so): # more of an integration test due to the not-public contents portion # can probably mock this though. for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]: df = read_csv( "s3://pandas-test/tips.csv" + ext, compression=comp, storage_options=s3so, ) assert isinstance(df, DataFrame) assert not df.empty tm.assert_frame_equal(df, tips_df) # Read public file from bucket with not-public contents df = read_csv("s3://cant_get_it/tips.csv", storage_options=s3so) assert isinstance(df, DataFrame) assert not df.empty tm.assert_frame_equal(df, tips_df) def test_parse_public_s3n_bucket(self, tips_df, s3so): # Read from AWS s3 as "s3n" URL df = read_csv("s3n://pandas-test/tips.csv", nrows=10, storage_options=s3so) assert isinstance(df, DataFrame) assert not df.empty tm.assert_frame_equal(tips_df.iloc[:10], df) def test_parse_public_s3a_bucket(self, tips_df, s3so): # Read from AWS s3 as "s3a" URL df = read_csv("s3a://pandas-test/tips.csv", nrows=10, storage_options=s3so) assert isinstance(df, DataFrame) assert not df.empty tm.assert_frame_equal(tips_df.iloc[:10], df) def test_parse_public_s3_bucket_nrows(self, tips_df, s3so): for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]: df = read_csv( "s3://pandas-test/tips.csv" + ext, nrows=10, compression=comp, storage_options=s3so, ) assert isinstance(df, DataFrame) assert not df.empty tm.assert_frame_equal(tips_df.iloc[:10], df) def test_parse_public_s3_bucket_chunked(self, tips_df, s3so): # Read with a chunksize chunksize = 5 for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]: with read_csv( "s3://pandas-test/tips.csv" + ext, chunksize=chunksize, compression=comp, storage_options=s3so, ) as df_reader: assert df_reader.chunksize == chunksize for i_chunk in [0, 1, 2]: # Read a couple of chunks and make sure we see them # properly. df = df_reader.get_chunk() assert isinstance(df, DataFrame) assert not df.empty true_df = tips_df.iloc[ chunksize * i_chunk : chunksize * (i_chunk + 1) ] tm.assert_frame_equal(true_df, df) def test_parse_public_s3_bucket_chunked_python(self, tips_df, s3so): # Read with a chunksize using the Python parser chunksize = 5 for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]: with read_csv( "s3://pandas-test/tips.csv" + ext, chunksize=chunksize, compression=comp, engine="python", storage_options=s3so, ) as df_reader: assert df_reader.chunksize == chunksize for i_chunk in [0, 1, 2]: # Read a couple of chunks and make sure we see them properly. df = df_reader.get_chunk() assert isinstance(df, DataFrame) assert not df.empty true_df = tips_df.iloc[ chunksize * i_chunk : chunksize * (i_chunk + 1) ] tm.assert_frame_equal(true_df, df) def test_parse_public_s3_bucket_python(self, tips_df, s3so): for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]: df = read_csv( "s3://pandas-test/tips.csv" + ext, engine="python", compression=comp, storage_options=s3so, ) assert isinstance(df, DataFrame) assert not df.empty tm.assert_frame_equal(df, tips_df) def test_infer_s3_compression(self, tips_df, s3so): for ext in ["", ".gz", ".bz2"]: df = read_csv( "s3://pandas-test/tips.csv" + ext, engine="python", compression="infer", storage_options=s3so, ) assert isinstance(df, DataFrame) assert not df.empty tm.assert_frame_equal(df, tips_df) def test_parse_public_s3_bucket_nrows_python(self, tips_df, s3so): for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]: df = read_csv( "s3://pandas-test/tips.csv" + ext, engine="python", nrows=10, compression=comp, storage_options=s3so, ) assert isinstance(df, DataFrame) assert not df.empty tm.assert_frame_equal(tips_df.iloc[:10], df) def test_read_s3_fails(self, s3so): msg = "The specified bucket does not exist" with pytest.raises(OSError, match=msg): read_csv("s3://nyqpug/asdf.csv", storage_options=s3so) # Receive a permission error when trying to read a private bucket. # It's irrelevant here that this isn't actually a table. with pytest.raises(OSError, match=msg): read_csv("s3://cant_get_it/file.csv") @pytest.mark.xfail(reason="GH#39155 s3fs upgrade", strict=False) def test_write_s3_csv_fails(self, tips_df, s3so): # GH 32486 # Attempting to write to an invalid S3 path should raise import botocore # GH 34087 # https://boto3.amazonaws.com/v1/documentation/api/latest/guide/error-handling.html # Catch a ClientError since AWS Service Errors are defined dynamically error = (FileNotFoundError, botocore.exceptions.ClientError) with pytest.raises(error, match="The specified bucket does not exist"): tips_df.to_csv( "s3://an_s3_bucket_data_doesnt_exit/not_real.csv", storage_options=s3so ) @pytest.mark.xfail(reason="GH#39155 s3fs upgrade", strict=False) @td.skip_if_no("pyarrow") def test_write_s3_parquet_fails(self, tips_df, s3so): # GH 27679 # Attempting to write to an invalid S3 path should raise import botocore # GH 34087 # https://boto3.amazonaws.com/v1/documentation/api/latest/guide/error-handling.html # Catch a ClientError since AWS Service Errors are defined dynamically error = (FileNotFoundError, botocore.exceptions.ClientError) with pytest.raises(error, match="The specified bucket does not exist"): tips_df.to_parquet( "s3://an_s3_bucket_data_doesnt_exit/not_real.parquet", storage_options=s3so, ) @pytest.mark.single_cpu def test_read_csv_handles_boto_s3_object(self, s3_resource, tips_file): # see gh-16135 s3_object = s3_resource.meta.client.get_object( Bucket="pandas-test", Key="tips.csv" ) with BytesIO(s3_object["Body"].read()) as buffer: result = read_csv(buffer, encoding="utf8") assert isinstance(result, DataFrame) assert not result.empty expected = read_csv(tips_file) tm.assert_frame_equal(result, expected) @pytest.mark.single_cpu @pytest.mark.skipif( is_ci_environment(), reason="This test can hang in our CI min_versions build " "and leads to '##[error]The runner has " "received a shutdown signal...' in GHA. GH: 45651", ) def test_read_csv_chunked_download(self, s3_resource, caplog, s3so): # 8 MB, S3FS uses 5MB chunks import s3fs df = DataFrame(np.random.randn(100000, 4), columns=list("abcd")) str_buf = StringIO() df.to_csv(str_buf) buf = BytesIO(str_buf.getvalue().encode("utf-8")) s3_resource.Bucket("pandas-test").put_object(Key="large-file.csv", Body=buf) # Possibly some state leaking in between tests. # If we don't clear this cache, we saw `GetObject operation: Forbidden`. # Presumably the s3fs instance is being cached, with the directory listing # from *before* we add the large-file.csv in the pandas-test bucket. s3fs.S3FileSystem.clear_instance_cache() with caplog.at_level(logging.DEBUG, logger="s3fs"): read_csv("s3://pandas-test/large-file.csv", nrows=5, storage_options=s3so) # log of fetch_range (start, stop) assert (0, 5505024) in (x.args[-2:] for x in caplog.records) def test_read_s3_with_hash_in_key(self, tips_df, s3so): # GH 25945 result = read_csv("s3://pandas-test/tips#1.csv", storage_options=s3so) tm.assert_frame_equal(tips_df, result) @td.skip_if_no("pyarrow") def test_read_feather_s3_file_path(self, feather_file, s3so): # GH 29055 expected = read_feather(feather_file) res = read_feather( "s3://pandas-test/simple_dataset.feather", storage_options=s3so ) tm.assert_frame_equal(expected, res)