import bz2 import datetime as dt from datetime import datetime import gzip import io import os import struct import tarfile import warnings import zipfile import numpy as np import pytest from pandas.core.dtypes.common import is_categorical_dtype import pandas as pd import pandas._testing as tm from pandas.core.frame import ( DataFrame, Series, ) from pandas.tests.io.test_compression import _compression_to_extension from pandas.io.parsers import read_csv from pandas.io.stata import ( CategoricalConversionWarning, InvalidColumnName, PossiblePrecisionLoss, StataMissingValue, StataReader, StataWriter, StataWriterUTF8, ValueLabelTypeMismatch, read_stata, ) @pytest.fixture def mixed_frame(): return DataFrame( { "a": [1, 2, 3, 4], "b": [1.0, 3.0, 27.0, 81.0], "c": ["Atlanta", "Birmingham", "Cincinnati", "Detroit"], } ) @pytest.fixture def parsed_114(datapath): dta14_114 = datapath("io", "data", "stata", "stata5_114.dta") parsed_114 = read_stata(dta14_114, convert_dates=True) parsed_114.index.name = "index" return parsed_114 class TestStata: def read_dta(self, file): # Legacy default reader configuration return read_stata(file, convert_dates=True) def read_csv(self, file): return read_csv(file, parse_dates=True) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_read_empty_dta(self, version): empty_ds = DataFrame(columns=["unit"]) # GH 7369, make sure can read a 0-obs dta file with tm.ensure_clean() as path: empty_ds.to_stata(path, write_index=False, version=version) empty_ds2 = read_stata(path) tm.assert_frame_equal(empty_ds, empty_ds2) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_read_index_col_none(self, version): df = DataFrame({"a": range(5), "b": ["b1", "b2", "b3", "b4", "b5"]}) # GH 7369, make sure can read a 0-obs dta file with tm.ensure_clean() as path: df.to_stata(path, write_index=False, version=version) read_df = read_stata(path) assert isinstance(read_df.index, pd.RangeIndex) expected = df.copy() expected["a"] = expected["a"].astype(np.int32) tm.assert_frame_equal(read_df, expected, check_index_type=True) @pytest.mark.parametrize("file", ["stata1_114", "stata1_117"]) def test_read_dta1(self, file, datapath): file = datapath("io", "data", "stata", f"{file}.dta") parsed = self.read_dta(file) # Pandas uses np.nan as missing value. # Thus, all columns will be of type float, regardless of their name. expected = DataFrame( [(np.nan, np.nan, np.nan, np.nan, np.nan)], columns=["float_miss", "double_miss", "byte_miss", "int_miss", "long_miss"], ) # this is an oddity as really the nan should be float64, but # the casting doesn't fail so need to match stata here expected["float_miss"] = expected["float_miss"].astype(np.float32) tm.assert_frame_equal(parsed, expected) def test_read_dta2(self, datapath): expected = DataFrame.from_records( [ ( datetime(2006, 11, 19, 23, 13, 20), 1479596223000, datetime(2010, 1, 20), datetime(2010, 1, 8), datetime(2010, 1, 1), datetime(1974, 7, 1), datetime(2010, 1, 1), datetime(2010, 1, 1), ), ( datetime(1959, 12, 31, 20, 3, 20), -1479590, datetime(1953, 10, 2), datetime(1948, 6, 10), datetime(1955, 1, 1), datetime(1955, 7, 1), datetime(1955, 1, 1), datetime(2, 1, 1), ), (pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT), ], columns=[ "datetime_c", "datetime_big_c", "date", "weekly_date", "monthly_date", "quarterly_date", "half_yearly_date", "yearly_date", ], ) expected["yearly_date"] = expected["yearly_date"].astype("O") with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") parsed_114 = self.read_dta( datapath("io", "data", "stata", "stata2_114.dta") ) parsed_115 = self.read_dta( datapath("io", "data", "stata", "stata2_115.dta") ) parsed_117 = self.read_dta( datapath("io", "data", "stata", "stata2_117.dta") ) # 113 is buggy due to limits of date format support in Stata # parsed_113 = self.read_dta( # datapath("io", "data", "stata", "stata2_113.dta") # ) # Remove resource warnings w = [x for x in w if x.category is UserWarning] # should get warning for each call to read_dta assert len(w) == 3 # buggy test because of the NaT comparison on certain platforms # Format 113 test fails since it does not support tc and tC formats # tm.assert_frame_equal(parsed_113, expected) tm.assert_frame_equal(parsed_114, expected, check_datetimelike_compat=True) tm.assert_frame_equal(parsed_115, expected, check_datetimelike_compat=True) tm.assert_frame_equal(parsed_117, expected, check_datetimelike_compat=True) @pytest.mark.parametrize( "file", ["stata3_113", "stata3_114", "stata3_115", "stata3_117"] ) def test_read_dta3(self, file, datapath): file = datapath("io", "data", "stata", f"{file}.dta") parsed = self.read_dta(file) # match stata here expected = self.read_csv(datapath("io", "data", "stata", "stata3.csv")) expected = expected.astype(np.float32) expected["year"] = expected["year"].astype(np.int16) expected["quarter"] = expected["quarter"].astype(np.int8) tm.assert_frame_equal(parsed, expected) @pytest.mark.parametrize( "file", ["stata4_113", "stata4_114", "stata4_115", "stata4_117"] ) def test_read_dta4(self, file, datapath): file = datapath("io", "data", "stata", f"{file}.dta") parsed = self.read_dta(file) expected = DataFrame.from_records( [ ["one", "ten", "one", "one", "one"], ["two", "nine", "two", "two", "two"], ["three", "eight", "three", "three", "three"], ["four", "seven", 4, "four", "four"], ["five", "six", 5, np.nan, "five"], ["six", "five", 6, np.nan, "six"], ["seven", "four", 7, np.nan, "seven"], ["eight", "three", 8, np.nan, "eight"], ["nine", "two", 9, np.nan, "nine"], ["ten", "one", "ten", np.nan, "ten"], ], columns=[ "fully_labeled", "fully_labeled2", "incompletely_labeled", "labeled_with_missings", "float_labelled", ], ) # these are all categoricals for col in expected: orig = expected[col].copy() categories = np.asarray(expected["fully_labeled"][orig.notna()]) if col == "incompletely_labeled": categories = orig cat = orig.astype("category")._values cat = cat.set_categories(categories, ordered=True) cat.categories.rename(None, inplace=True) expected[col] = cat # stata doesn't save .category metadata tm.assert_frame_equal(parsed, expected) # File containing strls def test_read_dta12(self, datapath): parsed_117 = self.read_dta(datapath("io", "data", "stata", "stata12_117.dta")) expected = DataFrame.from_records( [ [1, "abc", "abcdefghi"], [3, "cba", "qwertywertyqwerty"], [93, "", "strl"], ], columns=["x", "y", "z"], ) tm.assert_frame_equal(parsed_117, expected, check_dtype=False) def test_read_dta18(self, datapath): parsed_118 = self.read_dta(datapath("io", "data", "stata", "stata14_118.dta")) parsed_118["Bytes"] = parsed_118["Bytes"].astype("O") expected = DataFrame.from_records( [ ["Cat", "Bogota", "Bogotá", 1, 1.0, "option b Ünicode", 1.0], ["Dog", "Boston", "Uzunköprü", np.nan, np.nan, np.nan, np.nan], ["Plane", "Rome", "Tromsø", 0, 0.0, "option a", 0.0], ["Potato", "Tokyo", "Elâzığ", -4, 4.0, 4, 4], ["", "", "", 0, 0.3332999, "option a", 1 / 3.0], ], columns=[ "Things", "Cities", "Unicode_Cities_Strl", "Ints", "Floats", "Bytes", "Longs", ], ) expected["Floats"] = expected["Floats"].astype(np.float32) for col in parsed_118.columns: tm.assert_almost_equal(parsed_118[col], expected[col]) with StataReader(datapath("io", "data", "stata", "stata14_118.dta")) as rdr: vl = rdr.variable_labels() vl_expected = { "Unicode_Cities_Strl": "Here are some strls with Ünicode chars", "Longs": "long data", "Things": "Here are some things", "Bytes": "byte data", "Ints": "int data", "Cities": "Here are some cities", "Floats": "float data", } tm.assert_dict_equal(vl, vl_expected) assert rdr.data_label == "This is a Ünicode data label" def test_read_write_dta5(self): original = DataFrame( [(np.nan, np.nan, np.nan, np.nan, np.nan)], columns=["float_miss", "double_miss", "byte_miss", "int_miss", "long_miss"], ) original.index.name = "index" with tm.ensure_clean() as path: original.to_stata(path, convert_dates=None) written_and_read_again = self.read_dta(path) expected = original.copy() expected.index = expected.index.astype(np.int32) tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) def test_write_dta6(self, datapath): original = self.read_csv(datapath("io", "data", "stata", "stata3.csv")) original.index.name = "index" original.index = original.index.astype(np.int32) original["year"] = original["year"].astype(np.int32) original["quarter"] = original["quarter"].astype(np.int32) with tm.ensure_clean() as path: original.to_stata(path, convert_dates=None) written_and_read_again = self.read_dta(path) tm.assert_frame_equal( written_and_read_again.set_index("index"), original, check_index_type=False, ) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_read_write_dta10(self, version): original = DataFrame( data=[["string", "object", 1, 1.1, np.datetime64("2003-12-25")]], columns=["string", "object", "integer", "floating", "datetime"], ) original["object"] = Series(original["object"], dtype=object) original.index.name = "index" original.index = original.index.astype(np.int32) original["integer"] = original["integer"].astype(np.int32) with tm.ensure_clean() as path: original.to_stata(path, convert_dates={"datetime": "tc"}, version=version) written_and_read_again = self.read_dta(path) # original.index is np.int32, read index is np.int64 tm.assert_frame_equal( written_and_read_again.set_index("index"), original, check_index_type=False, ) def test_stata_doc_examples(self): with tm.ensure_clean() as path: df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df.to_stata(path) def test_write_preserves_original(self): # 9795 np.random.seed(423) df = DataFrame(np.random.randn(5, 4), columns=list("abcd")) df.loc[2, "a":"c"] = np.nan df_copy = df.copy() with tm.ensure_clean() as path: df.to_stata(path, write_index=False) tm.assert_frame_equal(df, df_copy) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_encoding(self, version, datapath): # GH 4626, proper encoding handling raw = read_stata(datapath("io", "data", "stata", "stata1_encoding.dta")) encoded = read_stata(datapath("io", "data", "stata", "stata1_encoding.dta")) result = encoded.kreis1849[0] expected = raw.kreis1849[0] assert result == expected assert isinstance(result, str) with tm.ensure_clean() as path: encoded.to_stata(path, write_index=False, version=version) reread_encoded = read_stata(path) tm.assert_frame_equal(encoded, reread_encoded) def test_read_write_dta11(self): original = DataFrame( [(1, 2, 3, 4)], columns=[ "good", "b\u00E4d", "8number", "astringwithmorethan32characters______", ], ) formatted = DataFrame( [(1, 2, 3, 4)], columns=["good", "b_d", "_8number", "astringwithmorethan32characters_"], ) formatted.index.name = "index" formatted = formatted.astype(np.int32) with tm.ensure_clean() as path: with tm.assert_produces_warning(InvalidColumnName): original.to_stata(path, convert_dates=None) written_and_read_again = self.read_dta(path) expected = formatted.copy() expected.index = expected.index.astype(np.int32) tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_read_write_dta12(self, version): original = DataFrame( [(1, 2, 3, 4, 5, 6)], columns=[ "astringwithmorethan32characters_1", "astringwithmorethan32characters_2", "+", "-", "short", "delete", ], ) formatted = DataFrame( [(1, 2, 3, 4, 5, 6)], columns=[ "astringwithmorethan32characters_", "_0astringwithmorethan32character", "_", "_1_", "_short", "_delete", ], ) formatted.index.name = "index" formatted = formatted.astype(np.int32) with tm.ensure_clean() as path: with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", InvalidColumnName) original.to_stata(path, convert_dates=None, version=version) # should get a warning for that format. assert len(w) == 1 written_and_read_again = self.read_dta(path) expected = formatted.copy() expected.index = expected.index.astype(np.int32) tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) def test_read_write_dta13(self): s1 = Series(2**9, dtype=np.int16) s2 = Series(2**17, dtype=np.int32) s3 = Series(2**33, dtype=np.int64) original = DataFrame({"int16": s1, "int32": s2, "int64": s3}) original.index.name = "index" formatted = original formatted["int64"] = formatted["int64"].astype(np.float64) with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) expected = formatted.copy() expected.index = expected.index.astype(np.int32) tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) @pytest.mark.parametrize( "file", ["stata5_113", "stata5_114", "stata5_115", "stata5_117"] ) def test_read_write_reread_dta14(self, file, parsed_114, version, datapath): file = datapath("io", "data", "stata", f"{file}.dta") parsed = self.read_dta(file) parsed.index.name = "index" tm.assert_frame_equal(parsed_114, parsed) with tm.ensure_clean() as path: parsed_114.to_stata(path, convert_dates={"date_td": "td"}, version=version) written_and_read_again = self.read_dta(path) expected = parsed_114.copy() expected.index = expected.index.astype(np.int32) tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) @pytest.mark.parametrize( "file", ["stata6_113", "stata6_114", "stata6_115", "stata6_117"] ) def test_read_write_reread_dta15(self, file, datapath): expected = self.read_csv(datapath("io", "data", "stata", "stata6.csv")) expected["byte_"] = expected["byte_"].astype(np.int8) expected["int_"] = expected["int_"].astype(np.int16) expected["long_"] = expected["long_"].astype(np.int32) expected["float_"] = expected["float_"].astype(np.float32) expected["double_"] = expected["double_"].astype(np.float64) expected["date_td"] = expected["date_td"].apply( datetime.strptime, args=("%Y-%m-%d",) ) file = datapath("io", "data", "stata", f"{file}.dta") parsed = self.read_dta(file) tm.assert_frame_equal(expected, parsed) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_timestamp_and_label(self, version): original = DataFrame([(1,)], columns=["variable"]) time_stamp = datetime(2000, 2, 29, 14, 21) data_label = "This is a data file." with tm.ensure_clean() as path: original.to_stata( path, time_stamp=time_stamp, data_label=data_label, version=version ) with StataReader(path) as reader: assert reader.time_stamp == "29 Feb 2000 14:21" assert reader.data_label == data_label @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_invalid_timestamp(self, version): original = DataFrame([(1,)], columns=["variable"]) time_stamp = "01 Jan 2000, 00:00:00" with tm.ensure_clean() as path: msg = "time_stamp should be datetime type" with pytest.raises(ValueError, match=msg): original.to_stata(path, time_stamp=time_stamp, version=version) assert not os.path.isfile(path) def test_numeric_column_names(self): original = DataFrame(np.reshape(np.arange(25.0), (5, 5))) original.index.name = "index" with tm.ensure_clean() as path: # should get a warning for that format. with tm.assert_produces_warning(InvalidColumnName): original.to_stata(path) written_and_read_again = self.read_dta(path) written_and_read_again = written_and_read_again.set_index("index") columns = list(written_and_read_again.columns) convert_col_name = lambda x: int(x[1]) written_and_read_again.columns = map(convert_col_name, columns) expected = original.copy() expected.index = expected.index.astype(np.int32) tm.assert_frame_equal(expected, written_and_read_again) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_nan_to_missing_value(self, version): s1 = Series(np.arange(4.0), dtype=np.float32) s2 = Series(np.arange(4.0), dtype=np.float64) s1[::2] = np.nan s2[1::2] = np.nan original = DataFrame({"s1": s1, "s2": s2}) original.index.name = "index" with tm.ensure_clean() as path: original.to_stata(path, version=version) written_and_read_again = self.read_dta(path) written_and_read_again = written_and_read_again.set_index("index") expected = original.copy() expected.index = expected.index.astype(np.int32) tm.assert_frame_equal(written_and_read_again, expected) def test_no_index(self): columns = ["x", "y"] original = DataFrame(np.reshape(np.arange(10.0), (5, 2)), columns=columns) original.index.name = "index_not_written" with tm.ensure_clean() as path: original.to_stata(path, write_index=False) written_and_read_again = self.read_dta(path) with pytest.raises(KeyError, match=original.index.name): written_and_read_again["index_not_written"] def test_string_no_dates(self): s1 = Series(["a", "A longer string"]) s2 = Series([1.0, 2.0], dtype=np.float64) original = DataFrame({"s1": s1, "s2": s2}) original.index.name = "index" with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) expected = original.copy() expected.index = expected.index.astype(np.int32) tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) def test_large_value_conversion(self): s0 = Series([1, 99], dtype=np.int8) s1 = Series([1, 127], dtype=np.int8) s2 = Series([1, 2**15 - 1], dtype=np.int16) s3 = Series([1, 2**63 - 1], dtype=np.int64) original = DataFrame({"s0": s0, "s1": s1, "s2": s2, "s3": s3}) original.index.name = "index" with tm.ensure_clean() as path: with tm.assert_produces_warning(PossiblePrecisionLoss): original.to_stata(path) written_and_read_again = self.read_dta(path) modified = original.copy() modified["s1"] = Series(modified["s1"], dtype=np.int16) modified["s2"] = Series(modified["s2"], dtype=np.int32) modified["s3"] = Series(modified["s3"], dtype=np.float64) modified.index = original.index.astype(np.int32) tm.assert_frame_equal(written_and_read_again.set_index("index"), modified) def test_dates_invalid_column(self): original = DataFrame([datetime(2006, 11, 19, 23, 13, 20)]) original.index.name = "index" with tm.ensure_clean() as path: with tm.assert_produces_warning(InvalidColumnName): original.to_stata(path, convert_dates={0: "tc"}) written_and_read_again = self.read_dta(path) modified = original.copy() modified.columns = ["_0"] modified.index = original.index.astype(np.int32) tm.assert_frame_equal(written_and_read_again.set_index("index"), modified) def test_105(self, datapath): # Data obtained from: # http://go.worldbank.org/ZXY29PVJ21 dpath = datapath("io", "data", "stata", "S4_EDUC1.dta") df = read_stata(dpath) df0 = [[1, 1, 3, -2], [2, 1, 2, -2], [4, 1, 1, -2]] df0 = DataFrame(df0) df0.columns = ["clustnum", "pri_schl", "psch_num", "psch_dis"] df0["clustnum"] = df0["clustnum"].astype(np.int16) df0["pri_schl"] = df0["pri_schl"].astype(np.int8) df0["psch_num"] = df0["psch_num"].astype(np.int8) df0["psch_dis"] = df0["psch_dis"].astype(np.float32) tm.assert_frame_equal(df.head(3), df0) def test_value_labels_old_format(self, datapath): # GH 19417 # # Test that value_labels() returns an empty dict if the file format # predates supporting value labels. dpath = datapath("io", "data", "stata", "S4_EDUC1.dta") with StataReader(dpath) as reader: assert reader.value_labels() == {} def test_date_export_formats(self): columns = ["tc", "td", "tw", "tm", "tq", "th", "ty"] conversions = {c: c for c in columns} data = [datetime(2006, 11, 20, 23, 13, 20)] * len(columns) original = DataFrame([data], columns=columns) original.index.name = "index" expected_values = [ datetime(2006, 11, 20, 23, 13, 20), # Time datetime(2006, 11, 20), # Day datetime(2006, 11, 19), # Week datetime(2006, 11, 1), # Month datetime(2006, 10, 1), # Quarter year datetime(2006, 7, 1), # Half year datetime(2006, 1, 1), ] # Year expected = DataFrame( [expected_values], index=pd.Index([0], dtype=np.int32, name="index"), columns=columns, ) with tm.ensure_clean() as path: original.to_stata(path, convert_dates=conversions) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) def test_write_missing_strings(self): original = DataFrame([["1"], [None]], columns=["foo"]) expected = DataFrame( [["1"], [""]], index=pd.Index([0, 1], dtype=np.int32, name="index"), columns=["foo"], ) with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) @pytest.mark.parametrize("byteorder", [">", "<"]) def test_bool_uint(self, byteorder, version): s0 = Series([0, 1, True], dtype=np.bool_) s1 = Series([0, 1, 100], dtype=np.uint8) s2 = Series([0, 1, 255], dtype=np.uint8) s3 = Series([0, 1, 2**15 - 100], dtype=np.uint16) s4 = Series([0, 1, 2**16 - 1], dtype=np.uint16) s5 = Series([0, 1, 2**31 - 100], dtype=np.uint32) s6 = Series([0, 1, 2**32 - 1], dtype=np.uint32) original = DataFrame( {"s0": s0, "s1": s1, "s2": s2, "s3": s3, "s4": s4, "s5": s5, "s6": s6} ) original.index.name = "index" expected = original.copy() expected.index = original.index.astype(np.int32) expected_types = ( np.int8, np.int8, np.int16, np.int16, np.int32, np.int32, np.float64, ) for c, t in zip(expected.columns, expected_types): expected[c] = expected[c].astype(t) with tm.ensure_clean() as path: original.to_stata(path, byteorder=byteorder, version=version) written_and_read_again = self.read_dta(path) written_and_read_again = written_and_read_again.set_index("index") tm.assert_frame_equal(written_and_read_again, expected) def test_variable_labels(self, datapath): with StataReader(datapath("io", "data", "stata", "stata7_115.dta")) as rdr: sr_115 = rdr.variable_labels() with StataReader(datapath("io", "data", "stata", "stata7_117.dta")) as rdr: sr_117 = rdr.variable_labels() keys = ("var1", "var2", "var3") labels = ("label1", "label2", "label3") for k, v in sr_115.items(): assert k in sr_117 assert v == sr_117[k] assert k in keys assert v in labels def test_minimal_size_col(self): str_lens = (1, 100, 244) s = {} for str_len in str_lens: s["s" + str(str_len)] = Series( ["a" * str_len, "b" * str_len, "c" * str_len] ) original = DataFrame(s) with tm.ensure_clean() as path: original.to_stata(path, write_index=False) with StataReader(path) as sr: sr._ensure_open() # The `_*list` variables are initialized here for variable, fmt, typ in zip(sr._varlist, sr._fmtlist, sr._typlist): assert int(variable[1:]) == int(fmt[1:-1]) assert int(variable[1:]) == typ def test_excessively_long_string(self): str_lens = (1, 244, 500) s = {} for str_len in str_lens: s["s" + str(str_len)] = Series( ["a" * str_len, "b" * str_len, "c" * str_len] ) original = DataFrame(s) msg = ( r"Fixed width strings in Stata \.dta files are limited to 244 " r"\(or fewer\)\ncharacters\. Column 's500' does not satisfy " r"this restriction\. Use the\n'version=117' parameter to write " r"the newer \(Stata 13 and later\) format\." ) with pytest.raises(ValueError, match=msg): with tm.ensure_clean() as path: original.to_stata(path) def test_missing_value_generator(self): types = ("b", "h", "l") df = DataFrame([[0.0]], columns=["float_"]) with tm.ensure_clean() as path: df.to_stata(path) with StataReader(path) as rdr: valid_range = rdr.VALID_RANGE expected_values = ["." + chr(97 + i) for i in range(26)] expected_values.insert(0, ".") for t in types: offset = valid_range[t][1] for i in range(0, 27): val = StataMissingValue(offset + 1 + i) assert val.string == expected_values[i] # Test extremes for floats val = StataMissingValue(struct.unpack(" DataFrame: """ Emulate the categorical casting behavior we expect from roundtripping. """ for col in from_frame: ser = from_frame[col] if is_categorical_dtype(ser.dtype): cat = ser._values.remove_unused_categories() if cat.categories.dtype == object: categories = pd.Index._with_infer(cat.categories._values) cat = cat.set_categories(categories) from_frame[col] = cat return from_frame def test_iterator(self, datapath): fname = datapath("io", "data", "stata", "stata3_117.dta") parsed = read_stata(fname) with read_stata(fname, iterator=True) as itr: chunk = itr.read(5) tm.assert_frame_equal(parsed.iloc[0:5, :], chunk) with read_stata(fname, chunksize=5) as itr: chunk = list(itr) tm.assert_frame_equal(parsed.iloc[0:5, :], chunk[0]) with read_stata(fname, iterator=True) as itr: chunk = itr.get_chunk(5) tm.assert_frame_equal(parsed.iloc[0:5, :], chunk) with read_stata(fname, chunksize=5) as itr: chunk = itr.get_chunk() tm.assert_frame_equal(parsed.iloc[0:5, :], chunk) # GH12153 with read_stata(fname, chunksize=4) as itr: from_chunks = pd.concat(itr) tm.assert_frame_equal(parsed, from_chunks) @pytest.mark.parametrize( "file", [ "stata2_115", "stata3_115", "stata4_115", "stata5_115", "stata6_115", "stata7_115", "stata8_115", "stata9_115", "stata10_115", "stata11_115", ], ) @pytest.mark.parametrize("chunksize", [1, 2]) @pytest.mark.parametrize("convert_categoricals", [False, True]) @pytest.mark.parametrize("convert_dates", [False, True]) def test_read_chunks_115( self, file, chunksize, convert_categoricals, convert_dates, datapath ): fname = datapath("io", "data", "stata", f"{file}.dta") # Read the whole file with warnings.catch_warnings(record=True): warnings.simplefilter("always") parsed = read_stata( fname, convert_categoricals=convert_categoricals, convert_dates=convert_dates, ) # Compare to what we get when reading by chunk with read_stata( fname, iterator=True, convert_dates=convert_dates, convert_categoricals=convert_categoricals, ) as itr: pos = 0 for j in range(5): with warnings.catch_warnings(record=True): warnings.simplefilter("always") try: chunk = itr.read(chunksize) except StopIteration: break from_frame = parsed.iloc[pos : pos + chunksize, :].copy() from_frame = self._convert_categorical(from_frame) tm.assert_frame_equal( from_frame, chunk, check_dtype=False, check_datetimelike_compat=True ) pos += chunksize def test_read_chunks_columns(self, datapath): fname = datapath("io", "data", "stata", "stata3_117.dta") columns = ["quarter", "cpi", "m1"] chunksize = 2 parsed = read_stata(fname, columns=columns) with read_stata(fname, iterator=True) as itr: pos = 0 for j in range(5): chunk = itr.read(chunksize, columns=columns) if chunk is None: break from_frame = parsed.iloc[pos : pos + chunksize, :] tm.assert_frame_equal(from_frame, chunk, check_dtype=False) pos += chunksize @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_write_variable_labels(self, version, mixed_frame): # GH 13631, add support for writing variable labels mixed_frame.index.name = "index" variable_labels = {"a": "City Rank", "b": "City Exponent", "c": "City"} with tm.ensure_clean() as path: mixed_frame.to_stata(path, variable_labels=variable_labels, version=version) with StataReader(path) as sr: read_labels = sr.variable_labels() expected_labels = { "index": "", "a": "City Rank", "b": "City Exponent", "c": "City", } assert read_labels == expected_labels variable_labels["index"] = "The Index" with tm.ensure_clean() as path: mixed_frame.to_stata(path, variable_labels=variable_labels, version=version) with StataReader(path) as sr: read_labels = sr.variable_labels() assert read_labels == variable_labels @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_invalid_variable_labels(self, version, mixed_frame): mixed_frame.index.name = "index" variable_labels = {"a": "very long" * 10, "b": "City Exponent", "c": "City"} with tm.ensure_clean() as path: msg = "Variable labels must be 80 characters or fewer" with pytest.raises(ValueError, match=msg): mixed_frame.to_stata( path, variable_labels=variable_labels, version=version ) @pytest.mark.parametrize("version", [114, 117]) def test_invalid_variable_label_encoding(self, version, mixed_frame): mixed_frame.index.name = "index" variable_labels = {"a": "very long" * 10, "b": "City Exponent", "c": "City"} variable_labels["a"] = "invalid character Œ" with tm.ensure_clean() as path: with pytest.raises( ValueError, match="Variable labels must contain only characters" ): mixed_frame.to_stata( path, variable_labels=variable_labels, version=version ) def test_write_variable_label_errors(self, mixed_frame): values = ["\u03A1", "\u0391", "\u039D", "\u0394", "\u0391", "\u03A3"] variable_labels_utf8 = { "a": "City Rank", "b": "City Exponent", "c": "".join(values), } msg = ( "Variable labels must contain only characters that can be " "encoded in Latin-1" ) with pytest.raises(ValueError, match=msg): with tm.ensure_clean() as path: mixed_frame.to_stata(path, variable_labels=variable_labels_utf8) variable_labels_long = { "a": "City Rank", "b": "City Exponent", "c": "A very, very, very long variable label " "that is too long for Stata which means " "that it has more than 80 characters", } msg = "Variable labels must be 80 characters or fewer" with pytest.raises(ValueError, match=msg): with tm.ensure_clean() as path: mixed_frame.to_stata(path, variable_labels=variable_labels_long) def test_default_date_conversion(self): # GH 12259 dates = [ dt.datetime(1999, 12, 31, 12, 12, 12, 12000), dt.datetime(2012, 12, 21, 12, 21, 12, 21000), dt.datetime(1776, 7, 4, 7, 4, 7, 4000), ] original = DataFrame( { "nums": [1.0, 2.0, 3.0], "strs": ["apple", "banana", "cherry"], "dates": dates, } ) with tm.ensure_clean() as path: original.to_stata(path, write_index=False) reread = read_stata(path, convert_dates=True) tm.assert_frame_equal(original, reread) original.to_stata(path, write_index=False, convert_dates={"dates": "tc"}) direct = read_stata(path, convert_dates=True) tm.assert_frame_equal(reread, direct) dates_idx = original.columns.tolist().index("dates") original.to_stata(path, write_index=False, convert_dates={dates_idx: "tc"}) direct = read_stata(path, convert_dates=True) tm.assert_frame_equal(reread, direct) def test_unsupported_type(self): original = DataFrame({"a": [1 + 2j, 2 + 4j]}) msg = "Data type complex128 not supported" with pytest.raises(NotImplementedError, match=msg): with tm.ensure_clean() as path: original.to_stata(path) def test_unsupported_datetype(self): dates = [ dt.datetime(1999, 12, 31, 12, 12, 12, 12000), dt.datetime(2012, 12, 21, 12, 21, 12, 21000), dt.datetime(1776, 7, 4, 7, 4, 7, 4000), ] original = DataFrame( { "nums": [1.0, 2.0, 3.0], "strs": ["apple", "banana", "cherry"], "dates": dates, } ) msg = "Format %tC not implemented" with pytest.raises(NotImplementedError, match=msg): with tm.ensure_clean() as path: original.to_stata(path, convert_dates={"dates": "tC"}) dates = pd.date_range("1-1-1990", periods=3, tz="Asia/Hong_Kong") original = DataFrame( { "nums": [1.0, 2.0, 3.0], "strs": ["apple", "banana", "cherry"], "dates": dates, } ) with pytest.raises(NotImplementedError, match="Data type datetime64"): with tm.ensure_clean() as path: original.to_stata(path) def test_repeated_column_labels(self, datapath): # GH 13923, 25772 msg = """ Value labels for column ethnicsn are not unique. These cannot be converted to pandas categoricals. Either read the file with `convert_categoricals` set to False or use the low level interface in `StataReader` to separately read the values and the value_labels. The repeated labels are:\n-+\nwolof """ with pytest.raises(ValueError, match=msg): read_stata( datapath("io", "data", "stata", "stata15.dta"), convert_categoricals=True, ) def test_stata_111(self, datapath): # 111 is an old version but still used by current versions of # SAS when exporting to Stata format. We do not know of any # on-line documentation for this version. df = read_stata(datapath("io", "data", "stata", "stata7_111.dta")) original = DataFrame( { "y": [1, 1, 1, 1, 1, 0, 0, np.NaN, 0, 0], "x": [1, 2, 1, 3, np.NaN, 4, 3, 5, 1, 6], "w": [2, np.NaN, 5, 2, 4, 4, 3, 1, 2, 3], "z": ["a", "b", "c", "d", "e", "", "g", "h", "i", "j"], } ) original = original[["y", "x", "w", "z"]] tm.assert_frame_equal(original, df) def test_out_of_range_double(self): # GH 14618 df = DataFrame( { "ColumnOk": [0.0, np.finfo(np.double).eps, 4.49423283715579e307], "ColumnTooBig": [0.0, np.finfo(np.double).eps, np.finfo(np.double).max], } ) msg = ( r"Column ColumnTooBig has a maximum value \(.+\) outside the range " r"supported by Stata \(.+\)" ) with pytest.raises(ValueError, match=msg): with tm.ensure_clean() as path: df.to_stata(path) def test_out_of_range_float(self): original = DataFrame( { "ColumnOk": [ 0.0, np.finfo(np.float32).eps, np.finfo(np.float32).max / 10.0, ], "ColumnTooBig": [ 0.0, np.finfo(np.float32).eps, np.finfo(np.float32).max, ], } ) original.index.name = "index" for col in original: original[col] = original[col].astype(np.float32) with tm.ensure_clean() as path: original.to_stata(path) reread = read_stata(path) original["ColumnTooBig"] = original["ColumnTooBig"].astype(np.float64) expected = original.copy() expected.index = expected.index.astype(np.int32) tm.assert_frame_equal(reread.set_index("index"), expected) @pytest.mark.parametrize("infval", [np.inf, -np.inf]) def test_inf(self, infval): # GH 45350 df = DataFrame({"WithoutInf": [0.0, 1.0], "WithInf": [2.0, infval]}) msg = ( "Column WithInf contains infinity or -infinity" "which is outside the range supported by Stata." ) with pytest.raises(ValueError, match=msg): with tm.ensure_clean() as path: df.to_stata(path) def test_path_pathlib(self): df = tm.makeDataFrame() df.index.name = "index" reader = lambda x: read_stata(x).set_index("index") result = tm.round_trip_pathlib(df.to_stata, reader) tm.assert_frame_equal(df, result) def test_pickle_path_localpath(self): df = tm.makeDataFrame() df.index.name = "index" reader = lambda x: read_stata(x).set_index("index") result = tm.round_trip_localpath(df.to_stata, reader) tm.assert_frame_equal(df, result) @pytest.mark.parametrize("write_index", [True, False]) def test_value_labels_iterator(self, write_index): # GH 16923 d = {"A": ["B", "E", "C", "A", "E"]} df = DataFrame(data=d) df["A"] = df["A"].astype("category") with tm.ensure_clean() as path: df.to_stata(path, write_index=write_index) with read_stata(path, iterator=True) as dta_iter: value_labels = dta_iter.value_labels() assert value_labels == {"A": {0: "A", 1: "B", 2: "C", 3: "E"}} def test_set_index(self): # GH 17328 df = tm.makeDataFrame() df.index.name = "index" with tm.ensure_clean() as path: df.to_stata(path) reread = read_stata(path, index_col="index") tm.assert_frame_equal(df, reread) @pytest.mark.parametrize( "column", ["ms", "day", "week", "month", "qtr", "half", "yr"] ) def test_date_parsing_ignores_format_details(self, column, datapath): # GH 17797 # # Test that display formats are ignored when determining if a numeric # column is a date value. # # All date types are stored as numbers and format associated with the # column denotes both the type of the date and the display format. # # STATA supports 9 date types which each have distinct units. We test 7 # of the 9 types, ignoring %tC and %tb. %tC is a variant of %tc that # accounts for leap seconds and %tb relies on STATAs business calendar. df = read_stata(datapath("io", "data", "stata", "stata13_dates.dta")) unformatted = df.loc[0, column] formatted = df.loc[0, column + "_fmt"] assert unformatted == formatted def test_writer_117(self): original = DataFrame( data=[ [ "string", "object", 1, 1, 1, 1.1, 1.1, np.datetime64("2003-12-25"), "a", "a" * 2045, "a" * 5000, "a", ], [ "string-1", "object-1", 1, 1, 1, 1.1, 1.1, np.datetime64("2003-12-26"), "b", "b" * 2045, "", "", ], ], columns=[ "string", "object", "int8", "int16", "int32", "float32", "float64", "datetime", "s1", "s2045", "srtl", "forced_strl", ], ) original["object"] = Series(original["object"], dtype=object) original["int8"] = Series(original["int8"], dtype=np.int8) original["int16"] = Series(original["int16"], dtype=np.int16) original["int32"] = original["int32"].astype(np.int32) original["float32"] = Series(original["float32"], dtype=np.float32) original.index.name = "index" original.index = original.index.astype(np.int32) copy = original.copy() with tm.ensure_clean() as path: original.to_stata( path, convert_dates={"datetime": "tc"}, convert_strl=["forced_strl"], version=117, ) written_and_read_again = self.read_dta(path) # original.index is np.int32, read index is np.int64 tm.assert_frame_equal( written_and_read_again.set_index("index"), original, check_index_type=False, ) tm.assert_frame_equal(original, copy) def test_convert_strl_name_swap(self): original = DataFrame( [["a" * 3000, "A", "apple"], ["b" * 1000, "B", "banana"]], columns=["long1" * 10, "long", 1], ) original.index.name = "index" with tm.assert_produces_warning(InvalidColumnName): with tm.ensure_clean() as path: original.to_stata(path, convert_strl=["long", 1], version=117) reread = self.read_dta(path) reread = reread.set_index("index") reread.columns = original.columns tm.assert_frame_equal(reread, original, check_index_type=False) def test_invalid_date_conversion(self): # GH 12259 dates = [ dt.datetime(1999, 12, 31, 12, 12, 12, 12000), dt.datetime(2012, 12, 21, 12, 21, 12, 21000), dt.datetime(1776, 7, 4, 7, 4, 7, 4000), ] original = DataFrame( { "nums": [1.0, 2.0, 3.0], "strs": ["apple", "banana", "cherry"], "dates": dates, } ) with tm.ensure_clean() as path: msg = "convert_dates key must be a column or an integer" with pytest.raises(ValueError, match=msg): original.to_stata(path, convert_dates={"wrong_name": "tc"}) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_nonfile_writing(self, version): # GH 21041 bio = io.BytesIO() df = tm.makeDataFrame() df.index.name = "index" with tm.ensure_clean() as path: df.to_stata(bio, version=version) bio.seek(0) with open(path, "wb") as dta: dta.write(bio.read()) reread = read_stata(path, index_col="index") tm.assert_frame_equal(df, reread) def test_gzip_writing(self): # writing version 117 requires seek and cannot be used with gzip df = tm.makeDataFrame() df.index.name = "index" with tm.ensure_clean() as path: with gzip.GzipFile(path, "wb") as gz: df.to_stata(gz, version=114) with gzip.GzipFile(path, "rb") as gz: reread = read_stata(gz, index_col="index") tm.assert_frame_equal(df, reread) def test_unicode_dta_118(self, datapath): unicode_df = self.read_dta(datapath("io", "data", "stata", "stata16_118.dta")) columns = ["utf8", "latin1", "ascii", "utf8_strl", "ascii_strl"] values = [ ["ραηδας", "PÄNDÄS", "p", "ραηδας", "p"], ["ƤĀńĐąŜ", "Ö", "a", "ƤĀńĐąŜ", "a"], ["ᴘᴀᴎᴅᴀS", "Ü", "n", "ᴘᴀᴎᴅᴀS", "n"], [" ", " ", "d", " ", "d"], [" ", "", "a", " ", "a"], ["", "", "s", "", "s"], ["", "", " ", "", " "], ] expected = DataFrame(values, columns=columns) tm.assert_frame_equal(unicode_df, expected) def test_mixed_string_strl(self): # GH 23633 output = [{"mixed": "string" * 500, "number": 0}, {"mixed": None, "number": 1}] output = DataFrame(output) output.number = output.number.astype("int32") with tm.ensure_clean() as path: output.to_stata(path, write_index=False, version=117) reread = read_stata(path) expected = output.fillna("") tm.assert_frame_equal(reread, expected) # Check strl supports all None (null) output["mixed"] = None output.to_stata( path, write_index=False, convert_strl=["mixed"], version=117 ) reread = read_stata(path) expected = output.fillna("") tm.assert_frame_equal(reread, expected) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_all_none_exception(self, version): output = [{"none": "none", "number": 0}, {"none": None, "number": 1}] output = DataFrame(output) output["none"] = None with tm.ensure_clean() as path: with pytest.raises(ValueError, match="Column `none` cannot be exported"): output.to_stata(path, version=version) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_invalid_file_not_written(self, version): content = "Here is one __�__ Another one __·__ Another one __½__" df = DataFrame([content], columns=["invalid"]) with tm.ensure_clean() as path: msg1 = ( r"'latin-1' codec can't encode character '\\ufffd' " r"in position 14: ordinal not in range\(256\)" ) msg2 = ( "'ascii' codec can't decode byte 0xef in position 14: " r"ordinal not in range\(128\)" ) with pytest.raises(UnicodeEncodeError, match=f"{msg1}|{msg2}"): df.to_stata(path) def test_strl_latin1(self): # GH 23573, correct GSO data to reflect correct size output = DataFrame( [["pandas"] * 2, ["þâÑÐŧ"] * 2], columns=["var_str", "var_strl"] ) with tm.ensure_clean() as path: output.to_stata(path, version=117, convert_strl=["var_strl"]) with open(path, "rb") as reread: content = reread.read() expected = "þâÑÐŧ" assert expected.encode("latin-1") in content assert expected.encode("utf-8") in content gsos = content.split(b"strls")[1][1:-2] for gso in gsos.split(b"GSO")[1:]: val = gso.split(b"\x00")[-2] size = gso[gso.find(b"\x82") + 1] assert len(val) == size - 1 def test_encoding_latin1_118(self, datapath): # GH 25960 msg = """ One or more strings in the dta file could not be decoded using utf-8, and so the fallback encoding of latin-1 is being used. This can happen when a file has been incorrectly encoded by Stata or some other software. You should verify the string values returned are correct.""" # Move path outside of read_stata, or else assert_produces_warning # will block pytests skip mechanism from triggering (failing the test) # if the path is not present path = datapath("io", "data", "stata", "stata1_encoding_118.dta") with tm.assert_produces_warning(UnicodeWarning) as w: encoded = read_stata(path) assert len(w) == 151 assert w[0].message.args[0] == msg expected = DataFrame([["Düsseldorf"]] * 151, columns=["kreis1849"]) tm.assert_frame_equal(encoded, expected) @pytest.mark.slow def test_stata_119(self, datapath): # Gzipped since contains 32,999 variables and uncompressed is 20MiB with gzip.open( datapath("io", "data", "stata", "stata1_119.dta.gz"), "rb" ) as gz: df = read_stata(gz) assert df.shape == (1, 32999) assert df.iloc[0, 6] == "A" * 3000 assert df.iloc[0, 7] == 3.14 assert df.iloc[0, -1] == 1 assert df.iloc[0, 0] == pd.Timestamp(datetime(2012, 12, 21, 21, 12, 21)) @pytest.mark.parametrize("version", [118, 119, None]) def test_utf8_writer(self, version): cat = pd.Categorical(["a", "β", "ĉ"], ordered=True) data = DataFrame( [ [1.0, 1, "ᴬ", "ᴀ relatively long ŝtring"], [2.0, 2, "ᴮ", ""], [3.0, 3, "ᴰ", None], ], columns=["Å", "β", "ĉ", "strls"], ) data["ᴐᴬᵀ"] = cat variable_labels = { "Å": "apple", "β": "ᵈᵉᵊ", "ĉ": "ᴎტჄႲႳႴႶႺ", "strls": "Long Strings", "ᴐᴬᵀ": "", } data_label = "ᴅaᵀa-label" value_labels = {"β": {1: "label", 2: "æøå", 3: "ŋot valid latin-1"}} data["β"] = data["β"].astype(np.int32) with tm.ensure_clean() as path: writer = StataWriterUTF8( path, data, data_label=data_label, convert_strl=["strls"], variable_labels=variable_labels, write_index=False, version=version, value_labels=value_labels, ) writer.write_file() reread_encoded = read_stata(path) # Missing is intentionally converted to empty strl data["strls"] = data["strls"].fillna("") # Variable with value labels is reread as categorical data["β"] = ( data["β"].replace(value_labels["β"]).astype("category").cat.as_ordered() ) tm.assert_frame_equal(data, reread_encoded) with StataReader(path) as reader: assert reader.data_label == data_label assert reader.variable_labels() == variable_labels data.to_stata(path, version=version, write_index=False) reread_to_stata = read_stata(path) tm.assert_frame_equal(data, reread_to_stata) def test_writer_118_exceptions(self): df = DataFrame(np.zeros((1, 33000), dtype=np.int8)) with tm.ensure_clean() as path: with pytest.raises(ValueError, match="version must be either 118 or 119."): StataWriterUTF8(path, df, version=117) with tm.ensure_clean() as path: with pytest.raises(ValueError, match="You must use version 119"): StataWriterUTF8(path, df, version=118) @pytest.mark.parametrize("version", [105, 108, 111, 113, 114]) def test_backward_compat(version, datapath): data_base = datapath("io", "data", "stata") ref = os.path.join(data_base, "stata-compat-118.dta") old = os.path.join(data_base, f"stata-compat-{version}.dta") expected = read_stata(ref) old_dta = read_stata(old) tm.assert_frame_equal(old_dta, expected, check_dtype=False) def test_direct_read(datapath, monkeypatch): file_path = datapath("io", "data", "stata", "stata-compat-118.dta") # Test that opening a file path doesn't buffer the file. with StataReader(file_path) as reader: # Must not have been buffered to memory assert not reader.read().empty assert not isinstance(reader._path_or_buf, io.BytesIO) # Test that we use a given fp exactly, if possible. with open(file_path, "rb") as fp: with StataReader(fp) as reader: assert not reader.read().empty assert reader._path_or_buf is fp # Test that we use a given BytesIO exactly, if possible. with open(file_path, "rb") as fp: with io.BytesIO(fp.read()) as bio: with StataReader(bio) as reader: assert not reader.read().empty assert reader._path_or_buf is bio def test_statareader_warns_when_used_without_context(datapath): file_path = datapath("io", "data", "stata", "stata-compat-118.dta") with tm.assert_produces_warning( ResourceWarning, match="without using a context manager", ): sr = StataReader(file_path) sr.read() with tm.assert_produces_warning( FutureWarning, match="is not part of the public API", ): sr.close() @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) @pytest.mark.parametrize("use_dict", [True, False]) @pytest.mark.parametrize("infer", [True, False]) def test_compression(compression, version, use_dict, infer): file_name = "dta_inferred_compression.dta" if compression: if use_dict: file_ext = compression else: file_ext = _compression_to_extension[compression] file_name += f".{file_ext}" compression_arg = compression if infer: compression_arg = "infer" if use_dict: compression_arg = {"method": compression} df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df.index.name = "index" with tm.ensure_clean(file_name) as path: df.to_stata(path, version=version, compression=compression_arg) if compression == "gzip": with gzip.open(path, "rb") as comp: fp = io.BytesIO(comp.read()) elif compression == "zip": with zipfile.ZipFile(path, "r") as comp: fp = io.BytesIO(comp.read(comp.filelist[0])) elif compression == "tar": with tarfile.open(path) as tar: fp = io.BytesIO(tar.extractfile(tar.getnames()[0]).read()) elif compression == "bz2": with bz2.open(path, "rb") as comp: fp = io.BytesIO(comp.read()) elif compression == "zstd": zstd = pytest.importorskip("zstandard") with zstd.open(path, "rb") as comp: fp = io.BytesIO(comp.read()) elif compression == "xz": lzma = pytest.importorskip("lzma") with lzma.open(path, "rb") as comp: fp = io.BytesIO(comp.read()) elif compression is None: fp = path reread = read_stata(fp, index_col="index") expected = df.copy() expected.index = expected.index.astype(np.int32) tm.assert_frame_equal(reread, expected) @pytest.mark.parametrize("method", ["zip", "infer"]) @pytest.mark.parametrize("file_ext", [None, "dta", "zip"]) def test_compression_dict(method, file_ext): file_name = f"test.{file_ext}" archive_name = "test.dta" df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df.index.name = "index" with tm.ensure_clean(file_name) as path: compression = {"method": method, "archive_name": archive_name} df.to_stata(path, compression=compression) if method == "zip" or file_ext == "zip": with zipfile.ZipFile(path, "r") as zp: assert len(zp.filelist) == 1 assert zp.filelist[0].filename == archive_name fp = io.BytesIO(zp.read(zp.filelist[0])) else: fp = path reread = read_stata(fp, index_col="index") expected = df.copy() expected.index = expected.index.astype(np.int32) tm.assert_frame_equal(reread, expected) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_chunked_categorical(version): df = DataFrame({"cats": Series(["a", "b", "a", "b", "c"], dtype="category")}) df.index.name = "index" expected = df.copy() expected.index = expected.index.astype(np.int32) with tm.ensure_clean() as path: df.to_stata(path, version=version) with StataReader(path, chunksize=2, order_categoricals=False) as reader: for i, block in enumerate(reader): block = block.set_index("index") assert "cats" in block tm.assert_series_equal( block.cats, expected.cats.iloc[2 * i : 2 * (i + 1)] ) def test_chunked_categorical_partial(datapath): dta_file = datapath("io", "data", "stata", "stata-dta-partially-labeled.dta") values = ["a", "b", "a", "b", 3.0] with StataReader(dta_file, chunksize=2) as reader: with tm.assert_produces_warning(CategoricalConversionWarning): for i, block in enumerate(reader): assert list(block.cats) == values[2 * i : 2 * (i + 1)] if i < 2: idx = pd.Index(["a", "b"]) else: idx = pd.Index([3.0], dtype="float64") tm.assert_index_equal(block.cats.cat.categories, idx) with tm.assert_produces_warning(CategoricalConversionWarning): with StataReader(dta_file, chunksize=5) as reader: large_chunk = reader.__next__() direct = read_stata(dta_file) tm.assert_frame_equal(direct, large_chunk) @pytest.mark.parametrize("chunksize", (-1, 0, "apple")) def test_iterator_errors(datapath, chunksize): dta_file = datapath("io", "data", "stata", "stata-dta-partially-labeled.dta") with pytest.raises(ValueError, match="chunksize must be a positive"): with StataReader(dta_file, chunksize=chunksize): pass def test_iterator_value_labels(): # GH 31544 values = ["c_label", "b_label"] + ["a_label"] * 500 df = DataFrame({f"col{k}": pd.Categorical(values, ordered=True) for k in range(2)}) with tm.ensure_clean() as path: df.to_stata(path, write_index=False) expected = pd.Index(["a_label", "b_label", "c_label"], dtype="object") with read_stata(path, chunksize=100) as reader: for j, chunk in enumerate(reader): for i in range(2): tm.assert_index_equal(chunk.dtypes[i].categories, expected) tm.assert_frame_equal(chunk, df.iloc[j * 100 : (j + 1) * 100]) def test_precision_loss(): df = DataFrame( [[sum(2**i for i in range(60)), sum(2**i for i in range(52))]], columns=["big", "little"], ) with tm.ensure_clean() as path: with tm.assert_produces_warning( PossiblePrecisionLoss, match="Column converted from int64 to float64" ): df.to_stata(path, write_index=False) reread = read_stata(path) expected_dt = Series([np.float64, np.float64], index=["big", "little"]) tm.assert_series_equal(reread.dtypes, expected_dt) assert reread.loc[0, "little"] == df.loc[0, "little"] assert reread.loc[0, "big"] == float(df.loc[0, "big"]) def test_compression_roundtrip(compression): df = DataFrame( [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=["A", "B"], columns=["X", "Y", "Z"], ) df.index.name = "index" with tm.ensure_clean() as path: df.to_stata(path, compression=compression) reread = read_stata(path, compression=compression, index_col="index") tm.assert_frame_equal(df, reread) # explicitly ensure file was compressed. with tm.decompress_file(path, compression) as fh: contents = io.BytesIO(fh.read()) reread = read_stata(contents, index_col="index") tm.assert_frame_equal(df, reread) @pytest.mark.parametrize("to_infer", [True, False]) @pytest.mark.parametrize("read_infer", [True, False]) def test_stata_compression(compression_only, read_infer, to_infer): compression = compression_only ext = _compression_to_extension[compression] filename = f"test.{ext}" df = DataFrame( [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=["A", "B"], columns=["X", "Y", "Z"], ) df.index.name = "index" to_compression = "infer" if to_infer else compression read_compression = "infer" if read_infer else compression with tm.ensure_clean(filename) as path: df.to_stata(path, compression=to_compression) result = read_stata(path, compression=read_compression, index_col="index") tm.assert_frame_equal(result, df) def test_non_categorical_value_labels(): data = DataFrame( { "fully_labelled": [1, 2, 3, 3, 1], "partially_labelled": [1.0, 2.0, np.nan, 9.0, np.nan], "Y": [7, 7, 9, 8, 10], "Z": pd.Categorical(["j", "k", "l", "k", "j"]), } ) with tm.ensure_clean() as path: value_labels = { "fully_labelled": {1: "one", 2: "two", 3: "three"}, "partially_labelled": {1.0: "one", 2.0: "two"}, } expected = {**value_labels, "Z": {0: "j", 1: "k", 2: "l"}} writer = StataWriter(path, data, value_labels=value_labels) writer.write_file() with StataReader(path) as reader: reader_value_labels = reader.value_labels() assert reader_value_labels == expected msg = "Can't create value labels for notY, it wasn't found in the dataset." with pytest.raises(KeyError, match=msg): value_labels = {"notY": {7: "label1", 8: "label2"}} StataWriter(path, data, value_labels=value_labels) msg = ( "Can't create value labels for Z, value labels " "can only be applied to numeric columns." ) with pytest.raises(ValueError, match=msg): value_labels = {"Z": {1: "a", 2: "k", 3: "j", 4: "i"}} StataWriter(path, data, value_labels=value_labels) def test_non_categorical_value_label_name_conversion(): # Check conversion of invalid variable names data = DataFrame( { "invalid~!": [1, 1, 2, 3, 5, 8], # Only alphanumeric and _ "6_invalid": [1, 1, 2, 3, 5, 8], # Must start with letter or _ "invalid_name_longer_than_32_characters": [8, 8, 9, 9, 8, 8], # Too long "aggregate": [2, 5, 5, 6, 6, 9], # Reserved words (1, 2): [1, 2, 3, 4, 5, 6], # Hashable non-string } ) value_labels = { "invalid~!": {1: "label1", 2: "label2"}, "6_invalid": {1: "label1", 2: "label2"}, "invalid_name_longer_than_32_characters": {8: "eight", 9: "nine"}, "aggregate": {5: "five"}, (1, 2): {3: "three"}, } expected = { "invalid__": {1: "label1", 2: "label2"}, "_6_invalid": {1: "label1", 2: "label2"}, "invalid_name_longer_than_32_char": {8: "eight", 9: "nine"}, "_aggregate": {5: "five"}, "_1__2_": {3: "three"}, } with tm.ensure_clean() as path: with tm.assert_produces_warning(InvalidColumnName): data.to_stata(path, value_labels=value_labels) with StataReader(path) as reader: reader_value_labels = reader.value_labels() assert reader_value_labels == expected def test_non_categorical_value_label_convert_categoricals_error(): # Mapping more than one value to the same label is valid for Stata # labels, but can't be read with convert_categoricals=True value_labels = { "repeated_labels": {10: "Ten", 20: "More than ten", 40: "More than ten"} } data = DataFrame( { "repeated_labels": [10, 10, 20, 20, 40, 40], } ) with tm.ensure_clean() as path: data.to_stata(path, value_labels=value_labels) with StataReader(path, convert_categoricals=False) as reader: reader_value_labels = reader.value_labels() assert reader_value_labels == value_labels col = "repeated_labels" repeats = "-" * 80 + "\n" + "\n".join(["More than ten"]) msg = f""" Value labels for column {col} are not unique. These cannot be converted to pandas categoricals. Either read the file with `convert_categoricals` set to False or use the low level interface in `StataReader` to separately read the values and the value_labels. The repeated labels are: {repeats} """ with pytest.raises(ValueError, match=msg): read_stata(path, convert_categoricals=True) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) @pytest.mark.parametrize( "dtype", [ pd.BooleanDtype, pd.Int8Dtype, pd.Int16Dtype, pd.Int32Dtype, pd.Int64Dtype, pd.UInt8Dtype, pd.UInt16Dtype, pd.UInt32Dtype, pd.UInt64Dtype, ], ) def test_nullable_support(dtype, version): df = DataFrame( { "a": Series([1.0, 2.0, 3.0]), "b": Series([1, pd.NA, pd.NA], dtype=dtype.name), "c": Series(["a", "b", None]), } ) dtype_name = df.b.dtype.numpy_dtype.name # Only use supported names: no uint, bool or int64 dtype_name = dtype_name.replace("u", "") if dtype_name == "int64": dtype_name = "int32" elif dtype_name == "bool": dtype_name = "int8" value = StataMissingValue.BASE_MISSING_VALUES[dtype_name] smv = StataMissingValue(value) expected_b = Series([1, smv, smv], dtype=object, name="b") expected_c = Series(["a", "b", ""], name="c") with tm.ensure_clean() as path: df.to_stata(path, write_index=False, version=version) reread = read_stata(path, convert_missing=True) tm.assert_series_equal(df.a, reread.a) tm.assert_series_equal(reread.b, expected_b) tm.assert_series_equal(reread.c, expected_c)