281 lines
8.4 KiB
Python
281 lines
8.4 KiB
Python
"""
|
|
Various richly-typed exceptions, that also help us deal with string formatting
|
|
in python where it's easier.
|
|
|
|
By putting the formatting in `__str__`, we also avoid paying the cost for
|
|
users who silence the exceptions.
|
|
"""
|
|
from numpy.core.overrides import set_module
|
|
|
|
def _unpack_tuple(tup):
|
|
if len(tup) == 1:
|
|
return tup[0]
|
|
else:
|
|
return tup
|
|
|
|
|
|
def _display_as_base(cls):
|
|
"""
|
|
A decorator that makes an exception class look like its base.
|
|
|
|
We use this to hide subclasses that are implementation details - the user
|
|
should catch the base type, which is what the traceback will show them.
|
|
|
|
Classes decorated with this decorator are subject to removal without a
|
|
deprecation warning.
|
|
"""
|
|
assert issubclass(cls, Exception)
|
|
cls.__name__ = cls.__base__.__name__
|
|
return cls
|
|
|
|
|
|
class UFuncTypeError(TypeError):
|
|
""" Base class for all ufunc exceptions """
|
|
def __init__(self, ufunc):
|
|
self.ufunc = ufunc
|
|
|
|
|
|
@_display_as_base
|
|
class _UFuncBinaryResolutionError(UFuncTypeError):
|
|
""" Thrown when a binary resolution fails """
|
|
def __init__(self, ufunc, dtypes):
|
|
super().__init__(ufunc)
|
|
self.dtypes = tuple(dtypes)
|
|
assert len(self.dtypes) == 2
|
|
|
|
def __str__(self):
|
|
return (
|
|
"ufunc {!r} cannot use operands with types {!r} and {!r}"
|
|
).format(
|
|
self.ufunc.__name__, *self.dtypes
|
|
)
|
|
|
|
|
|
@_display_as_base
|
|
class _UFuncNoLoopError(UFuncTypeError):
|
|
""" Thrown when a ufunc loop cannot be found """
|
|
def __init__(self, ufunc, dtypes):
|
|
super().__init__(ufunc)
|
|
self.dtypes = tuple(dtypes)
|
|
|
|
def __str__(self):
|
|
return (
|
|
"ufunc {!r} did not contain a loop with signature matching types "
|
|
"{!r} -> {!r}"
|
|
).format(
|
|
self.ufunc.__name__,
|
|
_unpack_tuple(self.dtypes[:self.ufunc.nin]),
|
|
_unpack_tuple(self.dtypes[self.ufunc.nin:])
|
|
)
|
|
|
|
|
|
@_display_as_base
|
|
class _UFuncCastingError(UFuncTypeError):
|
|
def __init__(self, ufunc, casting, from_, to):
|
|
super().__init__(ufunc)
|
|
self.casting = casting
|
|
self.from_ = from_
|
|
self.to = to
|
|
|
|
|
|
@_display_as_base
|
|
class _UFuncInputCastingError(_UFuncCastingError):
|
|
""" Thrown when a ufunc input cannot be casted """
|
|
def __init__(self, ufunc, casting, from_, to, i):
|
|
super().__init__(ufunc, casting, from_, to)
|
|
self.in_i = i
|
|
|
|
def __str__(self):
|
|
# only show the number if more than one input exists
|
|
i_str = "{} ".format(self.in_i) if self.ufunc.nin != 1 else ""
|
|
return (
|
|
"Cannot cast ufunc {!r} input {}from {!r} to {!r} with casting "
|
|
"rule {!r}"
|
|
).format(
|
|
self.ufunc.__name__, i_str, self.from_, self.to, self.casting
|
|
)
|
|
|
|
|
|
@_display_as_base
|
|
class _UFuncOutputCastingError(_UFuncCastingError):
|
|
""" Thrown when a ufunc output cannot be casted """
|
|
def __init__(self, ufunc, casting, from_, to, i):
|
|
super().__init__(ufunc, casting, from_, to)
|
|
self.out_i = i
|
|
|
|
def __str__(self):
|
|
# only show the number if more than one output exists
|
|
i_str = "{} ".format(self.out_i) if self.ufunc.nout != 1 else ""
|
|
return (
|
|
"Cannot cast ufunc {!r} output {}from {!r} to {!r} with casting "
|
|
"rule {!r}"
|
|
).format(
|
|
self.ufunc.__name__, i_str, self.from_, self.to, self.casting
|
|
)
|
|
|
|
|
|
# Exception used in shares_memory()
|
|
@set_module('numpy')
|
|
class TooHardError(RuntimeError):
|
|
"""max_work was exceeded.
|
|
|
|
This is raised whenever the maximum number of candidate solutions
|
|
to consider specified by the ``max_work`` parameter is exceeded.
|
|
Assigning a finite number to max_work may have caused the operation
|
|
to fail.
|
|
|
|
"""
|
|
|
|
pass
|
|
|
|
|
|
@set_module('numpy')
|
|
class AxisError(ValueError, IndexError):
|
|
"""Axis supplied was invalid.
|
|
|
|
This is raised whenever an ``axis`` parameter is specified that is larger
|
|
than the number of array dimensions.
|
|
For compatibility with code written against older numpy versions, which
|
|
raised a mixture of `ValueError` and `IndexError` for this situation, this
|
|
exception subclasses both to ensure that ``except ValueError`` and
|
|
``except IndexError`` statements continue to catch `AxisError`.
|
|
|
|
.. versionadded:: 1.13
|
|
|
|
Parameters
|
|
----------
|
|
axis : int or str
|
|
The out of bounds axis or a custom exception message.
|
|
If an axis is provided, then `ndim` should be specified as well.
|
|
ndim : int, optional
|
|
The number of array dimensions.
|
|
msg_prefix : str, optional
|
|
A prefix for the exception message.
|
|
|
|
Attributes
|
|
----------
|
|
axis : int, optional
|
|
The out of bounds axis or ``None`` if a custom exception
|
|
message was provided. This should be the axis as passed by
|
|
the user, before any normalization to resolve negative indices.
|
|
|
|
.. versionadded:: 1.22
|
|
ndim : int, optional
|
|
The number of array dimensions or ``None`` if a custom exception
|
|
message was provided.
|
|
|
|
.. versionadded:: 1.22
|
|
|
|
|
|
Examples
|
|
--------
|
|
>>> array_1d = np.arange(10)
|
|
>>> np.cumsum(array_1d, axis=1)
|
|
Traceback (most recent call last):
|
|
...
|
|
numpy.AxisError: axis 1 is out of bounds for array of dimension 1
|
|
|
|
Negative axes are preserved:
|
|
|
|
>>> np.cumsum(array_1d, axis=-2)
|
|
Traceback (most recent call last):
|
|
...
|
|
numpy.AxisError: axis -2 is out of bounds for array of dimension 1
|
|
|
|
The class constructor generally takes the axis and arrays'
|
|
dimensionality as arguments:
|
|
|
|
>>> print(np.AxisError(2, 1, msg_prefix='error'))
|
|
error: axis 2 is out of bounds for array of dimension 1
|
|
|
|
Alternatively, a custom exception message can be passed:
|
|
|
|
>>> print(np.AxisError('Custom error message'))
|
|
Custom error message
|
|
|
|
"""
|
|
|
|
__slots__ = ("axis", "ndim", "_msg")
|
|
|
|
def __init__(self, axis, ndim=None, msg_prefix=None):
|
|
if ndim is msg_prefix is None:
|
|
# single-argument form: directly set the error message
|
|
self._msg = axis
|
|
self.axis = None
|
|
self.ndim = None
|
|
else:
|
|
self._msg = msg_prefix
|
|
self.axis = axis
|
|
self.ndim = ndim
|
|
|
|
def __str__(self):
|
|
axis = self.axis
|
|
ndim = self.ndim
|
|
|
|
if axis is ndim is None:
|
|
return self._msg
|
|
else:
|
|
msg = f"axis {axis} is out of bounds for array of dimension {ndim}"
|
|
if self._msg is not None:
|
|
msg = f"{self._msg}: {msg}"
|
|
return msg
|
|
|
|
|
|
@_display_as_base
|
|
class _ArrayMemoryError(MemoryError):
|
|
""" Thrown when an array cannot be allocated"""
|
|
def __init__(self, shape, dtype):
|
|
self.shape = shape
|
|
self.dtype = dtype
|
|
|
|
@property
|
|
def _total_size(self):
|
|
num_bytes = self.dtype.itemsize
|
|
for dim in self.shape:
|
|
num_bytes *= dim
|
|
return num_bytes
|
|
|
|
@staticmethod
|
|
def _size_to_string(num_bytes):
|
|
""" Convert a number of bytes into a binary size string """
|
|
|
|
# https://en.wikipedia.org/wiki/Binary_prefix
|
|
LOG2_STEP = 10
|
|
STEP = 1024
|
|
units = ['bytes', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB']
|
|
|
|
unit_i = max(num_bytes.bit_length() - 1, 1) // LOG2_STEP
|
|
unit_val = 1 << (unit_i * LOG2_STEP)
|
|
n_units = num_bytes / unit_val
|
|
del unit_val
|
|
|
|
# ensure we pick a unit that is correct after rounding
|
|
if round(n_units) == STEP:
|
|
unit_i += 1
|
|
n_units /= STEP
|
|
|
|
# deal with sizes so large that we don't have units for them
|
|
if unit_i >= len(units):
|
|
new_unit_i = len(units) - 1
|
|
n_units *= 1 << ((unit_i - new_unit_i) * LOG2_STEP)
|
|
unit_i = new_unit_i
|
|
|
|
unit_name = units[unit_i]
|
|
# format with a sensible number of digits
|
|
if unit_i == 0:
|
|
# no decimal point on bytes
|
|
return '{:.0f} {}'.format(n_units, unit_name)
|
|
elif round(n_units) < 1000:
|
|
# 3 significant figures, if none are dropped to the left of the .
|
|
return '{:#.3g} {}'.format(n_units, unit_name)
|
|
else:
|
|
# just give all the digits otherwise
|
|
return '{:#.0f} {}'.format(n_units, unit_name)
|
|
|
|
def __str__(self):
|
|
size_str = self._size_to_string(self._total_size)
|
|
return (
|
|
"Unable to allocate {} for an array with shape {} and data type {}"
|
|
.format(size_str, self.shape, self.dtype)
|
|
)
|